Publications by authors named "Lee W Tremblay"

The current emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for novel treatment strategies. Recently, BlaC, the principal β-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. The combination of meropenem and clavulanic acid, which inhibits BlaC, was found to be effective against even extensively drug-resistant M.

View Article and Find Full Text PDF

The genome of Mycobacterium tuberculosis (TB) contains a gene that encodes a highly active β-lactamase, BlaC, that imparts TB with resistance to β-lactam chemotherapy. The structure of covalent BlaC-β-lactam complexes suggests that active site residues K73 and E166 are essential for acylation and deacylation, respectively. We have prepared the K73A and E166A mutant forms of BlaC and have determined the structures of the Michaelis complex of cefamandole and the covalently bound acyl intermediate of cefamandole at resolutions of 1.

View Article and Find Full Text PDF

Despite the enormous success of beta-lactams as broad-spectrum antibacterials, they have never been widely used for the treatment of tuberculosis (TB) due to intrinsic resistance that is caused by the presence of a chromosomally encoded gene (blaC) in Mycobacterium tuberculosis. Our previous studies of TB BlaC revealed that this enzyme is an extremely broad-spectrum beta-lactamase hydrolyzing all beta-lactam classes. Carbapenems are slow substrates that acylate the enzyme but are only slowly deacylated and can therefore act also as potent inhibitors of BlaC.

View Article and Find Full Text PDF

beta-lactam antibiotics are ineffective against Mycobacterium tuberculosis, being rapidly hydrolyzed by the chromosomally encoded blaC gene product. The carbapenem class of beta-lactams are very poor substrates for BlaC, allowing us to determine the three-dimensional structure of the covalent BlaC-meropenem covalent complex at 1.8 angstrom resolution.

View Article and Find Full Text PDF

The intrinsic resistance of Mycobacterium tuberculosis to the beta-lactam class of antibiotics arises from a chromosomally encoded, extended spectrum, class A beta-lactamase, BlaC. Herein, we report the X-ray crystallographic structure of BlaC inhibited with clavulanate at a resolution of 1.7 A with an R-factor value of 0.

View Article and Find Full Text PDF

The HAD superfamily is a large superfamily of proteins which share a conserved core domain that provides those active site residues responsible for the chemistry common to all family members. The superfamily is further divided into the four subfamilies I, IIA, IIB, and III, based on the topology and insertion site of a cap domain that provides substrate specificity. This structural and functional division implies that members of a given HAD structural subclass may target substrates that have similar structural characteristics.

View Article and Find Full Text PDF

Lactococcus lactis beta-phosphoglucomutase (beta-PGM) catalyzes the interconversion of beta-d-glucose 1-phosphate (beta-G1P) and beta-d-glucose 6-phosphate (G6P), forming beta-d-glucose 1,6-(bis)phosphate (beta-G16P) as an intermediate. Beta-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has evolved to function as a mutase rather than as a phosphatase. This work was carried out to identify the structural basis underlying this diversification of function.

View Article and Find Full Text PDF

This communication reports the X-ray crystal structure of the alpha-d-galactose-1-phosphate complex with that of Lactococcus lactis beta-phosphoglucomutase (beta-PGM) crystallized in the presence of Mg2+ cofactor and the enzyme-to-phosphorus ratio determined by protein and phosphate analyses of the crystalline complex. The 1:1 ratio determined for this complex was compared to the 1:2 ratio determined for the crystals of beta-PGM grown in the presence of substrate and Mg2+ cofactor. This result verifies the published structure assignment of this latter complex as the phosphorane adduct formed by covalent bonding between the active site Asp8 carboxylate to the C(1)phosphorus of the beta-glucose 1,6-bisphosphate ligand and rules out the proposal of a beta-PGM-glucose-6-phosphate-1-MgF3- complex.

View Article and Find Full Text PDF