Understanding how neuronal circuits stabilize their activity is a fundamental yet poorly understood aspect of neuroscience. Here, we show that hippocampal network properties, such as firing rate distribution and dimensionality, are actively regulated, despite perturbations and single-cell drift. Continuous inhibition of N-methyl-D-aspartate receptors (NMDARs) ex vivo lowers the excitation/inhibition ratio and network firing rates while preserving resilience to perturbations.
View Article and Find Full Text PDFWhat is the physiological basis of long-term memory? The prevailing view in Neuroscience attributes changes in synaptic efficacy to memory acquisition, implying that stable memories correspond to stable connectivity patterns. However, an increasing body of experimental evidence points to significant, activity-independent fluctuations in synaptic strengths. How memories can survive these fluctuations and the accompanying stabilizing homeostatic mechanisms is a fundamental open question.
View Article and Find Full Text PDFMicrobial growth and division are fundamental processes relevant to many areas of life science. Of particular interest are homeostasis mechanisms, which buffer growth and division from accumulating fluctuations over multiple cycles. These mechanisms operate within single cells, possibly extending over several division cycles.
View Article and Find Full Text PDFEur Phys J E Soft Matter
September 2015
Protein variability in single cells has been studied extensively in populations, but little is known about temporal protein fluctuations in a single cell over extended times. We present here traces of protein copy number measured in individual bacteria over multiple generations and investigate their statistical properties, comparing them to previously measured population snapshots. We find that temporal fluctuations in individual cells exhibit the same properties as those previously observed in populations.
View Article and Find Full Text PDF