Publications by authors named "Lee Silverman"

Small cell lung cancer (SCLC) is a particularly aggressive subset of lung cancer, and identification of new therapeutic options is of significant interest. We recently reported that SCLC cell lines display a specific vulnerability to inhibition of squalene epoxidase (SQLE), an enzyme in the cholesterol biosynthetic pathway that catalyzes the conversion of squalene to 2,3-oxidosqualene. Since it has been reported that SQLE inhibition can result in dermatitis in dogs, we conducted a series of experiments to determine if SQLE inhibitors would be tolerated at exposures predicted to drive maximal efficacy in SCLC tumors.

View Article and Find Full Text PDF

Pyruvate kinase deficiency is a chronic hemolytic anemia caused by mutations in PK-R, a key glycolytic enzyme in erythrocytes. These 2 phase 1 randomized, placebo-controlled, double-blind healthy-volunteer studies assessed the safety, tolerability, and pharmacokinetics/pharmacodynamics of AG-348, a first-in-class allosteric PK-R activator. Twelve sequential cohorts were randomized 2:6 to receive oral placebo or AG-348, respectively, as a single dose (30-2500 mg) in the single-ascending-dose (SAD) study (ClinicalTrials.

View Article and Find Full Text PDF

Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors.

View Article and Find Full Text PDF

Pyruvate kinase (PK) deficiency is a rare genetic disease that causes chronic hemolytic anemia. There are currently no targeted therapies for PK deficiency. Here, we describe the identification and characterization of AG-348, an allosteric activator of PK that is currently in clinical trials for the treatment of PK deficiency.

View Article and Find Full Text PDF

Somatic gain-of-function mutations in isocitrate dehydrogenases () 1 and 2 are found in multiple hematologic and solid tumors, leading to accumulation of the oncometabolite ()-2-hydroxyglutarate (2HG). 2HG competitively inhibits α-ketoglutarate-dependent dioxygenases, including histone demethylases and methylcytosine dioxygenases of the TET family, causing epigenetic dysregulation and a block in cellular differentiation. studies have provided proof of concept for mutant IDH inhibition as a therapeutic approach.

View Article and Find Full Text PDF

The most common congenital disorder of glycosylation (CDG), phosphomannomutase 2 (PMM2)-CDG, is caused by mutations in PMM2 that limit availability of mannose precursors required for protein N-glycosylation. The disorder has no therapy and there are no models to test new treatments. We generated compound heterozygous mice with the R137H and F115L mutations in Pmm2 that correspond to the most prevalent alleles found in patients with PMM2-CDG.

View Article and Find Full Text PDF

D-2-hydroxyglutaric aciduria (D2HGA) type II is a rare neurometabolic disorder caused by germline gain-of-function mutations in isocitrate dehydrogenase 2 (IDH2), resulting in accumulation of D-2-hydroxyglutarate (D2HG). Patients exhibit a wide spectrum of symptoms including cardiomyopathy, epilepsy, developmental delay and limited life span. Currently, there are no effective therapeutic interventions.

View Article and Find Full Text PDF

The 33rd Society of Toxicologic Pathology's Annual Symposium focused on translational science and the relevance of toxicologic pathology to human health. Toxicologic pathologists work in diverse settings studying changes elicited by pharmacological, chemical, and environmental agents and factors that modify these responses. Regardless of the work setting, society members are dedicated to the integration of toxicologic pathology into hazard identification, risk assessment, and risk communication regarding human and animal exposure to potentially toxic substances.

View Article and Find Full Text PDF

The recent discovery of mutations in metabolic enzymes has rekindled interest in harnessing the altered metabolism of cancer cells for cancer therapy. One potential drug target is isocitrate dehydrogenase 1 (IDH1), which is mutated in multiple human cancers. Here, we examine the role of mutant IDH1 in fully transformed cells with endogenous IDH1 mutations.

View Article and Find Full Text PDF

Purpose: Small-molecule inhibitors of Aurora A (AAK) and B (ABK) kinases, which play important roles in mitosis, are currently being pursued in oncology clinical trials. We developed three novel assays to quantitatively measure biomarkers of AAK inhibition in vivo. Here, we describe preclinical characterization of alisertib (MLN8237), a selective AAK inhibitor, incorporating these novel pharmacodynamic assays.

View Article and Find Full Text PDF

This article provides observations on the features of sponsor-contract research organization communication that will achieve the best quality pathology report based on our collective experience. Information on the test article and any anticipated findings should be provided, and initial slide examination should be done with knowledge of treatment group (but may be followed by blinded review of target tissues to determine no-effect levels). Only a pathologist should write or revise the pathology report or the pathology section of the overall study report.

View Article and Find Full Text PDF

The mitotic kinase Aurora A is an important therapeutic target for cancer therapy. This study evaluated new mechanism-based pharmacodynamic biomarkers in cancer patients in two phase I studies of MLN8054, a small-molecule inhibitor of Aurora A kinase. Patients with advanced solid tumors received MLN8054 orally for 7 consecutive days in escalating dose cohorts, with skin and tumor biopsies obtained before and after dosing.

View Article and Find Full Text PDF

Bortezomib, a proteasome inhibitor, is an antineoplastic drug to treat multiple myeloma and mantle cell lymphoma. Its most clinically significant adverse event is peripheral sensory neuropathy. Our objective was to characterize the neuropathy induced by bortezomib in a mouse model.

View Article and Find Full Text PDF

Introduction: Antibody-cytotoxic conjugates are complex novel therapeutic agents whose toxicological properties are not presently well understood. The objective of this study was to identify toxicological markers in serum that correlate with MLN8866 (an antibody-cytotoxic conjugate) exposure and related pathological events in monkeys.

Materials And Methods: Cynomolgus monkeys were treated once with 5, 15, or 30 mg/kg MLN8866 via a 20 min intravenous infusion.

View Article and Find Full Text PDF

Antibody-cytotoxin conjugates are complex novel therapeutic agents whose toxicological properties are not presently well understood. The objective of this study was to identify serum biomarkers that correlate with MLN8866 (an Antibody-Cytotoxic Conjugate, mAb8866-CT) pathological events in monkeys and to predict the maximal tolerated dose (MTD) level using biomarkers. Cynomolgus monkeys were administered a single dose MLN8666 (5, 15 or 30 mg/kg) by intravenous infusion and evaluated over a 7-day period.

View Article and Find Full Text PDF

Background: Human T-lymphotropic virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma and is linked to a number of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13 and p30, whose roles are still being defined in the virus life cycle and in HTLV-1 virus-host cell interactions.

View Article and Find Full Text PDF

Over the past 25 years, animal models of human T-lymphotropic virus type 1 (HTLV-1) infection and transformation have provided critical knowledge about viral and host factors in adult T-cell leukemia/lymphoma (ATL). The virus consistently infects rabbits, some non-human primates, and to a lesser extent rats. In addition to providing fundamental concepts in viral transmission and immune responses against HTLV-1 infection, these models have provided new information about the role of viral proteins in carcinogenesis.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell lymphoma/leukemia (ATL). The HTLV-1 envelope gene exhibits limited variability when examined from infected individuals, but has not been tested using infectious clones of the virus in animal models. In vitro assays indicate that HTLV-1 envelope (Env) Ser75Ile, Asn95Asp, and Asn195Asp surface unit (SU) mutants are able to replicate in and immortalize lymphocytes.

View Article and Find Full Text PDF

Human T-cell lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma and exhibits high genetic stability in vivo. HTLV-1 contains four open reading frames (ORFs) in its pX region. ORF II encodes two proteins, p30(II) and p13(II), both of which are incompletely characterized.

View Article and Find Full Text PDF

Objective: Cyclooxygenase-2 (COX-2)-derived prostaglandins (PGs) are shown to play important pathophysiologic roles in various disease states. Recently, the effectiveness of topical PGs in reducing intraocular pressure (IOP) has stimulated further interest in the physiologic function of COX-2 and PGs in normal and glaucomatous eyes. Therefore, we investigated the cell-type distribution and expression of COX-2 in normal and glaucomatous dog eyes.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is associated with leukemia/lymphoma and neurologic disorders. Although the viral transcriptional activator Tax is the critical viral oncoprotein, Rex, which regulates the expression of the viral structural and enzymatic genes, is essential for efficient viral replication. Herein, we investigate the contribution of Rex in HTLV-1 immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model.

View Article and Find Full Text PDF