Publications by authors named "Lee Phebus"

Positron emission tomography (PET) imaging has become a useful noninvasive technique to explore molecular biology within living systems; however, the utility of this method is limited by the availability of suitable radiotracers to probe specific targets and disease biology. Methods to identify potential areas of improvement in the ability to predict small molecule performance as tracers prior to radiolabeling would speed the discovery of novel tracers. In this retrospective analysis, we characterized the brain penetration or peak SUV (standardized uptake value), binding potential (BP), and brain exposure kinetics across a series of known, nonradiolabeled PET ligands using in vivo LC-MS/MS (liquid chromatography coupled to mass spectrometry) and correlated these parameters with the reported PET ligand performance in nonhuman primates and humans available in the literature.

View Article and Find Full Text PDF

The objective of the described research effort was to identify a novel serotonin and norepinephrine reuptake inhibitor (SNRI) with improved norepinephrine transporter activity and acceptable metabolic stability and exhibiting minimal drug-drug interaction. We describe herein the discovery of a series of 3-substituted pyrrolidines, exemplified by compound 1. Compound 1 is a selective SNRI in vitro and in vivo, has favorable ADME properties, and retains inhibitory activity in the formalin model of pain behavior.

View Article and Find Full Text PDF

The disclosed 3-phenyl-5-isothiazole carboxamides are potent allosteric antagonists of mGluR1 with generally good selectivity relative to the related group 1 receptor mGluR5. Pharmacokinetic properties of a member of this series (1R,2R)-N-(3-(4-methoxyphenyl)-4-methylisothiazol-5-yl)-2-methylcyclopropanecarboxamide (14) are good, showing acceptable plasma and brain exposure after oral dosing. Oral administration of isothiazole 14 gave robust activity in the formalin model of persistent pain which correlated with CNS receptor occupancy.

View Article and Find Full Text PDF

Introduction: Lasmiditan (also known as COL-144 and LY573144; 2,4,6-trifluoro-N-[6-[(1-methylpiperidin-4-yl)carbonyl]pyridin-2yl]benzamide) is a high-affinity, highly selective serotonin (5-HT) 5-HT(1F) receptor agonist.

Results: In vitro binding studies show a K(i) value of 2.21 nM at the 5-HT(1F) receptor, compared with K(i) values of 1043 nM and 1357 nM at the 5-HT(1B) and 5-HT(1D) receptors, respectively, a selectivity ratio greater than 470-fold.

View Article and Find Full Text PDF

Purpose: Cannabinoid subtype 1 (CB(1)) receptors are found in nearly every organ in the body, may be involved in several neuropsychiatric and metabolic disorders, and are therefore an active target for pharmacotherapy and biomarker development. We recently reported brain imaging of CB(1) receptors with two PET radioligands: (11)C-MePPEP and (18)F-FMPEP-d (2). Here we describe the biodistribution and dosimetry estimates for these two radioligands.

View Article and Find Full Text PDF

Unlabelled: We recently demonstrated that (11)C-MePPEP, a PET ligand for CB(1) receptors, has such high uptake in the human brain that it can be imaged for 210 min and that receptor density can be quantified as distribution volume (V(T)) using the gold standard of compartmental modeling. However, (11)C-MePPEP had relatively poor retest and intersubject variabilities, which were likely caused by errors in the measurements of radioligand in plasma at low concentrations by 120 min. We sought to find an analog of (11)C-MePPEP that would provide more accurate plasma measurements.

View Article and Find Full Text PDF

[11C]MePPEP is a high affinity, CB1 receptor-selective, inverse agonist that has been studied in rodents and monkeys. We examined the ability of [11C]MePPEP to quantify CB1 receptors in human brain as distribution volume calculated with the "gold standard" method of compartmental modeling and compared results with the simple measure of brain uptake. A total of 17 healthy subjects participated in 26 positron emission tomography (PET) scans, with 8 having two PET scans to assess retest variability.

View Article and Find Full Text PDF

We have reported that [methyl- (11)C] (3 R,5 R)-5-(3-methoxyphenyl)-3-[(R)-1-phenylethylamino]-1-(4-trifluoromethylphenyl)pyrrolidin-2-one ([(11)C] 8, [(11)C]MePPEP) binds with high selectivity to cannabinoid type-1 (CB 1) receptors in monkey brain in vivo. We now describe the synthesis of 8 and four analogues, namely, the 4-fluorophenyl (16, FMePPEP), 3-fluoromethoxy (20, FMPEP), 3-fluoromethoxy- d 2 (21, FMPEP- d 2), and 3-fluoroethoxy analogues (22, FEPEP), and report their activity in an ex vivo model designed to identify compounds suitable for use as positron emission tomography (PET) ligands. These ligands exhibited high, selective potency at CB 1 receptors in vitro (K b < 1 nM).

View Article and Find Full Text PDF

Selective inhibitors of the glycine transporter 1 (GlyT1) have been implicated in central nervous system disorders related to hypoglutamatergic function such as schizophrenia. The selective GlyT1 inhibitors ALX5407 (NFPS) and LY2365109 {[2-(4-benzo[1,3]dioxol-5-yl-2-tert-butylphenoxy)ethyl]-methylamino}-acetic acid increased cerebrospinal fluid levels of glycine and potentiated NMDA-induced increases in dialysate levels of neurotransmitters in the prefrontal cortex (PFC) and the striatum. However, higher doses produced both stimulatory and inhibitory effects on motor performance and impaired respiration, suggesting significant involvement of cerebellar and brain stem areas.

View Article and Find Full Text PDF

[11C]MePPEP is an inverse agonist and a radioligand developed to image cannabinoid CB1 receptors with positron emission tomography (PET). It provides reversible, high specific signal in monkey brain. We assessed [11C]MePPEP in rodent brain with regard to receptor selectivity, susceptibility to transport by P-glycoprotein (P-gp), sensitivity to displacement by agonists, and accumulation of radiometabolites.

View Article and Find Full Text PDF

LY255582 is a pan opioid selective receptor antagonist that has been shown to have high affinity for mu, delta, and kappa receptors in vitro. In order to better understand the in vivo opioid receptor selectivity of LY255582, we developed in vivo receptor occupancy assays in the rat for the opioid mu, kappa and delta receptors using the occupancy tracers naltrexone, GR103545 and naltriben respectively. Individual assays for each target were established and then a "triple tracer" assay was created where all three tracers were injected simultaneously, taking advantage of LC/MS/MS technology to selectively monitor brain tracer levels.

View Article and Find Full Text PDF

Inhibition of the glycine transporter GlyT1 is a potential strategy for the treatment of schizophrenia. A novel series of GlyT1 inhibitors and their structure-activity relationships (SAR) are described. Members of this series are highly potent and selective transport inhibitors which are shown to elevate glycine levels in cerebrospinal fluid.

View Article and Find Full Text PDF

The cannabinoid CB(1) receptor is one of the most abundant G protein-coupled receptors in the brain and is a promising target of therapeutic drug development. Success of drug development for neuropsychiatric indications is significantly enhanced with the ability to directly measure spatial and temporal binding of compounds to receptors in central compartments. We assessed the utility of a new positron emission tomography (PET) radioligand to image CB(1) receptors in monkey brain.

View Article and Find Full Text PDF

The excitatory neurotransmitter glutamate has been implicated in both migraine and persistent pain. The identification of the kainate receptor GLU(K5) in dorsal root ganglia, the dorsal horn, and trigeminal ganglia makes it a target of interest for these indications. We examined the in vitro and in vivo pharmacology of the competitive GLU(K5)-selective kainate receptor antagonist LY466195 [(3S,4aR,6S,8aR)-6-[[(2S)-2-carboxy-4,4-difluoro-1-pyrrolidinyl]-methyl]decahydro-3-isoquinolinecarboxylic acid)], the most potent GLU(K5) antagonist described to date.

View Article and Find Full Text PDF

Preclinical brain receptor occupancy measures have heretofore been conducted by quantifying the brain distribution of a radiolabeled tracer ligand using either scintillation spectroscopy or tomographic imaging. For smaller animals like rodents, the majority of studies employ tissue dissection and scintillation spectroscopy. These measurements can also be accomplished using liquid chromatography coupled to mass spectral detection to measure the brain distribution of tracer molecules, obviating the need for radioligands.

View Article and Find Full Text PDF

Rationale: Cannabinoid type 1 (CB(1)) receptor antagonists are reportedly effective in reducing food intake both preclinically and clinically. This may be due in part to their effects on monoamine release in the brain. The level of central CB(1) receptor occupancy underlying these neurobiological effects is unclear.

View Article and Find Full Text PDF

Background: Knockout (KO) mice invalidated for the dopamine transporter (DAT) constitute a powerful animal model of neurobiological alterations associated with hyperdopaminergia relevant to schizophrenia and attention-deficit/hyperactivity disorder (ADHD).

Methods: Because of continuously increasing evidence for a neuromodulatory role of endocannabinoids in dopamine-related pathophysiological responses, we assessed endocannabinoid signaling in DAT KO mice and evaluated the ability of endocannabinoid ligands to normalize behavioral deficits, namely spontaneous hyperlocomotion in these mice.

Results: In DAT KO mice, we found markedly reduced anandamide levels, specifically in striatum, the dopamine nerve terminal region.

View Article and Find Full Text PDF

High performance liquid chromatography combined with either single quad or triple quad mass spectral detectors (LC/MS) was used to measure the brain distribution of receptor occupancy tracers targeting dopamine D2, serotonin 5-HT2A and neurokinin NK-1 receptors using the ligands raclopride, MDL-100907 and GR205171, respectively. All three non-radiolabeled tracer molecules were easily detectable in discrete rat brain areas after intravenous doses of 3, 3 and 30 microg/kg, respectively. These levels showed a differential brain distribution caused by differences in receptor density, as demonstrated by the observation that pretreatment with compounds that occupy these receptors reduced this differential distribution in a dose-dependent manner.

View Article and Find Full Text PDF

Rationale: The depressive phase of bipolar disorder (bipolar depression) is a difficult-to-treat form of depression. The olanzapine/fluoxetine combination (Symbyax) is the only medication approved to treat this disorder. The precise neural mechanisms responsible for its efficacy are not clearly understood.

View Article and Find Full Text PDF

Background: As many as 30% of individuals diagnosed with depression are nonresponsive to traditional antidepressant medication. Augmentation and combination strategies have emerged in an attempt to address this issue. Atypical antipsychotics (e.

View Article and Find Full Text PDF

Compound 1a (LY334370), a selective 5-HT(1F) receptor agonist (SSOFRA), inhibited dural inflammation in the neurogenic plasma protein extravasation model of migraine and demonstrated clinical efficacy for the acute treatment of migraine. Although 1a was greater than 100-fold selective over both the 5-HT(1B) and 5-HT(1D) receptors, it exhibited appreciable 5-HT(1A) receptor affinity. Described here is the synthesis and evaluation of a series of pyrrolo[2,3-c]pyridine and pyrrolo[3,2-b]pyridine (2a and 3a) as well as pyrrolo[3,2-d]pyrimidine (4a) analogues of 1a, compounds prepared in an effort to identify SSOFRAs with improved selectivity over other 5-HT(1) receptor subtypes.

View Article and Find Full Text PDF

Amino diacid 3, a highly selective competitive GluR5 kainate receptor antagonist, exhibited high GluR5 receptor affinity and selectivity over other glutamate receptors. Its diethyl ester prodrug 4 was orally active in two models of migraine: the neurogenic dural plasma protein extravasation model and the nucleus caudalis c-fos expression model. These data suggest that a GluR5 kainate receptor antagonist might be an efficacious antimigraine therapy with a novel mechanism of action.

View Article and Find Full Text PDF

Rationale: The selective serotonin uptake inhibitor (SSRI) fluoxetine has been shown to not only increase the extracellular concentrations of serotonin, but also dopamine and norepinephrine extracellular concentrations in rat prefrontal cortex. The effect of other SSRIs on monoamine concentrations in prefrontal cortex has not been thoroughly studied.

Objective: The aim of this study was to compare the ability of five systemically administered selective serotonin uptake inhibitors to increase acutely the extracellular concentrations of serotonin, norepinephrine and dopamine in rat prefrontal cortex.

View Article and Find Full Text PDF