Background: While all clinically translated antibody-drug conjugates (ADCs) contain a single-drug payload, most systemic cancer chemotherapies involve use of a combination of drugs. These regimens improve treatment outcomes and slow development of drug resistance. We here report the generation of an ADC with a dual-drug payload that combines two distinct mechanisms of action.
View Article and Find Full Text PDFCurrent strategies to produce homogeneous antibody-drug conjugates (ADCs) rely on mutations or inefficient conjugation chemistries. Here we present a strategy to produce site-specific ADCs using a highly reactive natural buried lysine embedded in a dual variable domain (DVD) format. This approach is mutation free and drug conjugation proceeds rapidly at neutral pH in a single step without removing any charges.
View Article and Find Full Text PDFConventional antibody-drug conjugates (ADCs) are heterogeneous mixtures that have poor pharmacokinetic properties and decreased efficacy relative to homogenous ADCs. Furthermore, ADCs that are maleimide-based often have inadequate circulatory stability, which can result in premature drug release with consequent off-target toxicities. Selenocysteine-modified antibodies have been developed that allow site-specific antibody conjugation, yielding homogeneous ADCs.
View Article and Find Full Text PDFSite-specific conjugation technologies enable the production of homogeneous antibody-drug conjugates (ADCs) with improved therapeutic indices compared to conventional ADCs. However, current site-specific conjugation methods can only attach one type of drug to a single antibody. Given the emergence of acquired resistance to current ADCs, arming single antibodies with different drugs may provide an attractive option in the development of next-generation ADCs.
View Article and Find Full Text PDFElectronic structure calculations, MP2/aug-cc-pVDZ, are used to determine C-H...
View Article and Find Full Text PDF