Folic acid (FA) supplementation is a potent tool to reduce devastating birth defects known as neural tube defects (NTDs). Though effective, questions remain how FA achieves its protective effect and which gene mutations are sensitive to folic acid levels. We explore the relationship between FA dosage and NTD rates using NTD mouse models.
View Article and Find Full Text PDFCoordination of neuronal differentiation with expansion of the neuroepithelial/neural progenitor cell (NEPC/NPC) pool is essential in early brain development. Our in vitro and in vivo studies identify independent and opposing roles for two neural-specific and differentially expressed non-coding RNAs derived from the same locus: the evolutionarily conserved lncRNA Rncr3 and the embedded microRNA miR124a-1. Rncr3 regulates NEPC/NPC proliferation and controls the biogenesis of miR124a, which determines neuronal differentiation.
View Article and Find Full Text PDFCilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation.
View Article and Find Full Text PDFCoordinated migration of the mesoderm is essential for accurate organization of the body plan during embryogenesis. However, little is known about how mesoderm migration influences posterior neural tube closure in mammals. Here, we show that spinal neural tube closure and lateral migration of the caudal paraxial mesoderm depend on transmembrane protein 132A (TMEM132A), a single-pass type I transmembrane protein, the function of which is not fully understood.
View Article and Find Full Text PDFComplex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses.
View Article and Find Full Text PDFNeural tube closure (NTC) is crucial for proper development of the brain and spinal cord and requires precise morphogenesis from a sheet of cells to an intact three-dimensional structure. NTC is dependent on successful regulation of hundreds of genes, a myriad of signaling pathways, concentration gradients, and is influenced by epigenetic and environmental cues. Failure of NTC is termed a neural tube defect (NTD) and is a leading class of congenital defects in the United States and worldwide.
View Article and Find Full Text PDFNeural tube defects (NTDs) are among the most common birth defects, with a prevalence of close to 19 per 10,000 births worldwide. The etiology of NTDs is complex involving the interplay of genetic and environmental factors. Since nutrient deficiency is a risk factor and dietary changes are the major preventative measure to reduce the risk of NTDs, a more detailed understanding of how common micronutrient imbalances contribute to NTDs is crucial.
View Article and Find Full Text PDFIdiopathic scoliosis (IS) is a spinal disorder affecting up to 3% of otherwise healthy children. IS has a strong familial genetic component and is believed to be genetically complex due to significant variability in phenotype and heritability. Previous studies identified putative loci and variants possibly contributing to IS susceptibility, including within extracellular matrix, cilia, and actin networks, but the genetic architecture and underlying mechanisms remain unresolved.
View Article and Find Full Text PDFBackground: The transcription factor Grainyhead-like 3 (GRHL3) has multiple roles in a variety of tissues during development including epithelial patterning and actin cytoskeletal regulation. During neural tube closure (NTC) in the mouse embryo, GRHL3 is expressed and functions in the non-neural ectoderm (NNE). Two important functions of GRHL3 are regulating the actin cytoskeleton during NTC and regulating the boundary between the NNE and neural ectoderm.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2020
Wnt signaling pathway plays indispensable roles in embryonic development and adult tissue homeostasis. However, the regulatory mechanisms involved in Wnt ligand trafficking within and secretion from the signal sending cells is still relatively uncharacterized. Here, we discover a novel regulator of Wnt signaling pathway called transmembrane protein 132A (TMEM132A).
View Article and Find Full Text PDFDisruptions in neural tube (NT) closure result in neural tube defects (NTDs). To understand the molecular processes required for mammalian NT closure, we investigated the role of , a sorting nexin gene. mutant mouse embryos display a fully-penetrant cranial NTD.
View Article and Find Full Text PDFBackground: Neural tube defects (NTDs) are failure of neural tube closure, which includes multiple central nervous system phenotypes. More than 300 mouse mutant strains exhibits NTDs phenotypes and give us some clues to establish association between biological functions and subphenotypes. However, the knowledge about association in human remains still very poor.
View Article and Find Full Text PDFDevelopment of the craniofacial structures requires the precise differentiation of cranial neural crest cells into osteoblasts or chondrocytes. Here, we explore the epigenetic and non-epigenetic mechanisms that are required for the development of craniofacial chondrocytes. We previously demonstrated that the acetyltransferase activity of the highly conserved acetyltransferase GCN5, or KAT2A, is required for murine craniofacial development.
View Article and Find Full Text PDFTo know the cause of sequence variants in neural tube defect (NTD). We sequenced genes implicated in neural tube closure (NTC) in a Chinese cohort and elucidated the molecular mechanism-driving mutations. In NTD cases, an increase in specific variants was identified, potentially deleterious rare variants harbored in H3K36me3 occupancy regions that recruits mismatch repair (MMR) machinery.
View Article and Find Full Text PDFBackground: Myelomeningocele (MMC) results in lifelong neurologic and functional deficits. Currently, prenatal repair of MMC closes the defect, resulting in a 50% reduction in postnatal ventriculoperitoneal shunting. However, this invasive fetal surgery is associated with significant morbidities to mother and baby.
View Article and Find Full Text PDFIntratumoral genetic heterogeneity is a widely accepted characteristic of human cancer, including the most common primary malignant brain tumor, glioblastoma. However, the variability in biological behaviors amongst cells within individual tumors is not well described. Invasion into unaffected brain parenchyma is one such behavior, and a leading mechanism of tumor recurrence unaddressed by the current therapeutic armamentarium.
View Article and Find Full Text PDFMicronutrition is essential for neural tube closure, and zinc deficiency is associated with human neural tube defects. Here, we modeled zinc deficiency in mouse embryos, and used live imaging and molecular studies to determine how zinc deficiency affects neural tube closure. Embryos cultured with the zinc chelator TPEN failed to close the neural tube and showed excess apoptosis.
View Article and Find Full Text PDFCranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation.
View Article and Find Full Text PDFIdiopathic scoliosis (IS) is a structural lateral spinal curvature of ≥10° that affects up to 3% of otherwise healthy children and can lead to life-long problems in severe cases. It is well-established that IS is a genetic disorder. Previous studies have identified genes that may contribute to the IS phenotype, but the overall genetic etiology of IS is not well understood.
View Article and Find Full Text PDFRare variants are considered underlying causes of complex diseases. The complex and severe group of disorders called neural tube defects (NTDs) results from failure of the neural tube to close during early embryogenesis. Neural tube closure requires the coordination of numerous signaling pathways, including the precise regulation of retinoic acid (RA) concentration, which is controlled by enzymes involved in RA synthesis and degradation.
View Article and Find Full Text PDFDiencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 (( )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling.
View Article and Find Full Text PDFHarlequin Ichthyosis is a severe skin disease caused by mutations in the human gene encoding ABCA12. Here, we characterize a novel mutation in intron 29 of the mouse Abca12 gene that leads to the loss of a 5' splice donor site and truncation of the Abca12 RNA transcript. Homozygous mutants of this smooth skin or smsk allele die perinatally with shiny translucent skin, typical of animal models of Harlequin Ichthyosis.
View Article and Find Full Text PDF