Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1.
View Article and Find Full Text PDFMassive parallel sequencing technology has greatly increased the breadth and depth of transcriptomic data that can be captured from P. falciparum samples. This has revolutionized in vitro studies but uptake has been slower in the analysis of clinical samples.
View Article and Find Full Text PDF