Using a 5 µm-diameter X-ray beam, we collected scanning X-ray microdiffraction in both the small-angle (SAXS) and the wide-angle (WAXS) regimes from thin sections of fixed human brain tissue from Alzheimer's subjects. The intensity of scattering in the SAXS regime of these patterns exhibits essentially no correlation with the observed intensity in the WAXS regime, indicating that the structures responsible for these two portions of the diffraction patterns, which reflect different length scales, are distinct. SAXS scattering exhibits a power-law behavior in which the log of intensity decreases linearly with the log of the scattering angle.
View Article and Find Full Text PDFHuman ornithine transcarbamylase (hOTC) is a mitochondrial transferase protein involved in the urea cycle and is crucial for the conversion of toxic ammonia to urea. Structural analysis coupled with kinetic studies of rat, bovine, and other transferase proteins has identified residues that play key roles in substrate recognition and conformational changes but has not provided direct evidence for all of the active residues involved in OTC function. Here, computational methods were used to predict the likely active residues of hOTC; the function of these residues was then probed with site-directed mutagenesis and biochemical characterization.
View Article and Find Full Text PDFMutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment.
View Article and Find Full Text PDFJ Appl Crystallogr
December 2022
Small-angle X-ray scattering (SAXS) from fibrils embedded in a fixed, thin section of tissue includes contributions from the fibrils, the polymeric matrix surrounding the fibrils, other constituents of the tissue, and cross-terms due to the spatial correlation between fibrils and neighboring molecules. This complex mixture severely limits the amount of information that can be extracted from scattering studies. However, availability of micro- and nano-beams has made the measurement of scattering from very small volumes possible, which, in some cases, may be dominated by a single fibrillar constituent.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2022
Scanning x-ray microdiffraction of complex tissues and materials is an emerging method for the study of macromolecular structures in situ, providing information on the way molecular constituents are arranged and interact with their microenvironment. Acting as a bridge between high-resolution images of individual constituents and lower resolution microscopies that generate global views of material, scanning microdiffraction provides an approach to study the functioning of complex tissues across multiple length scales. Here, we discuss the methodology, summarize results from recent studies, and discuss the potential of the technique for future studies coordinated with other biophysical techniques.
View Article and Find Full Text PDFHRas, KRas, and NRas are GTPases with a common set of effectors that control many cell-signaling pathways, including proliferation through Raf kinase. Their G-domains are nearly identical in sequence, with a few isoform-specific residues that have an effect on dynamics and biochemical properties. Here, we use accelerated molecular dynamics (aMD) simulations consistent with solution x-ray scattering experiments to elucidate mechanisms through which isoform-specific residues associated with each Ras isoform affects functionally important regions connected to the active site.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder defined by the progressive formation and spread of fibrillar aggregates of Aβ peptide and tau protein. Polymorphic forms of these aggregates may contribute to disease in varying ways since different neuropathologies appear to be associated with different sets of fibrillar structures and follow distinct pathological trajectories that elicit characteristic clinical phenotypes. The molecular mechanisms underlying the spread of these aggregates in disease may include nucleation, replication, and migration all of which could vary with polymorphic form, stage of disease, and region of brain.
View Article and Find Full Text PDFThis paper provides a synopsis of discussions related to the Learning Environments track of the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. The Learning Environments track had six interactive workshops that provided facilitated discussion and provide recommendations in the areas of: (1) Authentic project/problem identification in clinical, industrial, and global settings, (2) Experiential problem/project-based learning within courses, (3) Experiential learning in co-curricular learning settings, (4) Team-based learning, (5) Teaching to reach a diverse classroom, and (6) innovative platforms and pedagogy.
View Article and Find Full Text PDFPurpose: In low and middle-income countries, mechanical ventilators or commercially available devices used to offer continuous positive airway pressure are not readily affordable and available. In Ghana, nearly 10% of critically ill patients presenting to the emergency department require ventilator support.
Description: We designed, built, and tested a simple expiratory positive airway pressure (EPAP) device to provide adult respiratory support in low resource environments with or without supplemental oxygen and without the need for electricity.
Proc Natl Acad Sci U S A
March 2021
Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex.
View Article and Find Full Text PDFAlthough ACE2 (angiotensin converting enzyme 2) is considered the primary receptor for CoV-2 cell entry, recent reports suggest that alternative pathways may contribute. This paper considers the hypothesis that viral binding to cell-surface integrins may contribute to the high infectivity and widespread extra-pulmonary impacts of the SARS-CoV-2 virus. This potential is suggested on the basis of the emergence of an RGD (arginine-glycine-aspartate) sequence in the receptor-binding domain of the spike protein.
View Article and Find Full Text PDFAmyloid fibrils represent one of the defining features of Alzheimer's disease (AD). They are made up of protofilaments composed of amyloid β (Aβ) peptides that are held together with extraordinary stability by a network of tight steric zippers and axial hydrogen bonds. This review explores the hypothesis that the peptide conformation within a protofilament represents the physical embodiment of a "strain" of AD.
View Article and Find Full Text PDFA combination of small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations based on a coarse grained model is used to examine the effect of glycine substitutions in the short connector between the SH3 and SH2 domains of Hck, a member of the Src-family kinases. It has been shown previously that the activity of cSrc kinase is upregulated by substitution of 3 residues by glycine in the SH3-SH2 connector. Here, analysis of SAXS data indicates that the population of Hck in the disassembled state increases from 25% in the wild type kinase to 76% in the glycine mutant.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
February 2020
Understanding how enzymes achieve their tremendous catalytic power is a major question in biochemistry. Greater understanding is also needed for enzyme engineering applications. In many cases, enzyme efficiency and specificity depend on residues not in direct contact with the substrate, termed remote residues.
View Article and Find Full Text PDFCa-calmodulin (CaM) extracts KRas4B from the plasma membrane, suggesting that KRas4B/CaM interaction plays a role in regulating Ras signaling. To gain mechanistic insight, we provide a computational model, supported by experimental structural data, of farnesylated/methylated KRas4B interacting with CaM in solution and at anionic membranes including signaling lipids. Due to multiple interaction modes, we observe diverse conformational ensembles of the KRas4B-CaM complex.
View Article and Find Full Text PDFBackground: Low-temperature swelling of cotton linter cellulose and subsequent gelatinization in trifluoroacetic acid (TFA) greatly enhance rates of enzymatic digestion or maleic acid-AlCl catalyzed conversion to hydroxymethylfurfural (HMF) and levulinic acid (LA). However, lignin inhibits low-temperature swelling of TFA-treated intact wood particles from hybrid poplar ( × ) and results in greatly reduced yields of glucose or catalytic conversion compared to lignin-free cellulose. Previous studies have established that wood particles from transgenic lines of hybrid poplar with high syringyl (S) lignin content give greater glucose yields following enzymatic digestion.
View Article and Find Full Text PDFNF-κB essential modulator (NEMO) regulates NF-κB signaling by acting as a scaffold for the kinase IKKβ to direct its activity toward the NF-κB inhibitor, IκBα. Here, we show that a highly conserved central region of NEMO termed the intervening domain (IVD, amino acids 112-195) plays a key role in NEMO function. We determined a structural model of full-length NEMO by small-angle X-ray scattering and show that full-length, wild-type NEMO becomes more compact upon binding of a peptide comprising the NEMO binding domain of IKKβ (amino acids 701-745).
View Article and Find Full Text PDFWide-angle X-ray solution scattering (WAXS) patterns contain substantial information about the structure and dynamics of a protein. Solution scattering from a rigid protein can be predicted from atomic coordinate sets to within experimental error. However, structural fluctuations of proteins in solution can lead to significant changes in the observed intensities.
View Article and Find Full Text PDFEnzymes and motor proteins are dynamic macromolecules that coexist in a number of conformations of similar energies. Protein function is usually accompanied by a change in structure and flexibility, often induced upon binding to ligands. However, while measuring protein flexibility changes between active and resting states is of therapeutic significance, it remains a challenge.
View Article and Find Full Text PDFBackground: The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates.
Results: Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 °C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol.
Adenylate kinase (ADK) catalyzes the reversible Mg -dependent phosphoryl transfer reaction Mg +2ADP ↔Mg +ATP + AMP in essential cellular systems. This reaction is a major player in cellular energy homeostasis and the isoform network of ADK plays an important role in AMP metabolic signaling circuits. ADK has 3 domains, the LID, NMP, and CORE domains, that undergo large conformational rearrangements during ADK's catalytic cycle.
View Article and Find Full Text PDFCrystal structures of adenylate kinase (AdK) from Escherichia coli capture two states: an "open" conformation (apo) obtained in the absence of ligands and a "closed" conformation in which ligands are bound. Other AdK crystal structures suggest intermediate conformations that may lie on the transition pathway between these two states. To characterize the transition from open to closed states in solution, X-ray solution scattering data were collected from AdK in the apo form and with progressively increasing concentrations of five different ligands.
View Article and Find Full Text PDF