Solid-state characterization methods are used to study a dimorphic pharmaceutical compound and select a form for development. Polymorph screening found that [4-(4-chloro-3-fluorophenyl)-2-[4-(methyloxy)phenyl]-1,3-thiazol-5-yl] acetic acid can crystallize into two non-solvated polymorphs designated Forms 1 and 2. Physical methods including vibrational spectroscopy, X-ray powder diffraction, solid-state NMR (SSNMR), thermal analysis, and gravimetric water vapor sorption are used to fully characterize the two polymorphs.
View Article and Find Full Text PDFSingle crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), and solid-state NMR (SSNMR) techniques are used to analyze the structures of two nonsolvated polymorphs of {4-(4-chloro-3-fluorophenyl)-2-[4-(methyloxy)phenyl]-1,3-thiazol-5-yl} acetic acid. These polymorphs are enantiotropically-related with a thermodynamic transition temperature of 35 +/- 3 degrees C. The crystal structure of Form 1, which is thermodynamically more stable at lower temperatures, was determined by SCXRD.
View Article and Find Full Text PDFTopotecan hydrochloride, a pharmaceutical compound developed as a treatment for cancer, exhibits variable hydration states in a crystalline solid form chosen for manufacturing. This variability requires additional controls for successful development, and presents a characterization and detection challenge for analytical methods. In this study, overall water content was determined by Karl Fischer titration and thermogravimetric analysis (TGA) on topotecan HCl equilibrated at different relative humidity levels.
View Article and Find Full Text PDFFive polymorphic forms of tranilast were characterized by thermal, diffractometric, and spectroscopic techniques. The crystal structures of the most stable anhydrous form (Form I), a chloroform solvate, and a dichloromethane solvate were determined from single-crystal X-ray analysis. Two additional anhydrous forms of tranilast (Forms II and III) were also studied, but were not amenable to SCXRD.
View Article and Find Full Text PDF