the deep-sea annelid found at sunken whalefalls, is known to host Oceanospirillales bacterial endosymbionts intracellularly in specialized roots, which help it feed exclusively on vertebrate bones. Past studies, however, have also made mention of external bacteria on their trunks. During a 14-yr study, we reveal a dynamic, yet persistent, shift of Campylobacterales integrated into the epidermis of , which change over time as the whale carcass degrades on the sea floor.
View Article and Find Full Text PDFIntroduction: Insects share intimate relationships with microbes that play important roles in their biology. Yet our understanding of how host-bound microbial communities assemble and perpetuate over evolutionary time is limited. Ants host a wide range of microbes with diverse functions and are an emerging model for studying the evolution of insect microbiomes.
View Article and Find Full Text PDFFor over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood.
View Article and Find Full Text PDFBacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies.
View Article and Find Full Text PDFMany insects harbor heritable microbes that influence host phenotypes. Symbiont strains establish at different densities within hosts. This variation is important evolutionarily because within-host density has been linked to the costs and benefits of the symbiosis for both partners.
View Article and Find Full Text PDFFacultative symbionts are common in insects and can provide their hosts with significant adaptations. Yet we still have a limited understanding of what shapes their distributions, such as why particular symbiont strains are common in some host species yet absent in others. To address this question, we genotyped the defensive symbiont in 26 aphid species that commonly carry this microbe.
View Article and Find Full Text PDFAnts are among the most successful organisms on Earth. It has been suggested that forming symbioses with nutrient-supplementing microbes may have contributed to their success, by allowing ants to invade otherwise inaccessible niches. However, it is unclear whether ants have evolved symbioses repeatedly to overcome the same nutrient limitations.
View Article and Find Full Text PDFA symbiotic partnership with Blochmannia bacteria is thought to underpin the ecological success of carpenter ants. Disentangling the molecular interactions between the mutualistic partners supports an old hypothesis that many other ants also had similar symbioses and lost them.
View Article and Find Full Text PDFInsects evolve dependence-often extreme-on microbes for nutrition. This includes cases in which insects harbor multiple endosymbionts that function collectively as a metabolic unit [1-5]. How do these dependences originate [6], and is there a predictable sequence of events leading to the integration of new symbionts? While co-obligate symbioses, in which hosts rely on multiple nutrient-provisioning symbionts, have evolved numerous times across sap-feeding insects, there is only one known case in aphids, involving Buchnera aphidicola and Serratia symbiotica in the Lachninae subfamily [7-9].
View Article and Find Full Text PDFEnviron Microbiol Rep
December 2019
Animals are host to a community of microbes, collectively referred to as their microbiome, that can play a key role in their hosts' biology. The bacterial endosymbionts of insects have a particularly strong influence on their hosts, but despite their importance we still know little about the factors that influence the composition of insect microbial communities. Here, we ask: what is the relative importance of host relatedness and host ecology in structuring symbiont communities of diverse aphid species? We used next-generation sequencing to compare the microbiomes of 46 aphid species with known host plant affiliations.
View Article and Find Full Text PDFBackground: Facultative symbionts are common in eukaryotes and can provide their hosts with significant fitness benefits. Despite the advantage of carrying these microbes, they are typically only found in a fraction of the individuals within a population and are often non-randomly distributed among host populations. It is currently unclear why facultative symbionts are only found in certain host individuals and populations.
View Article and Find Full Text PDFOrganisms across the tree of life form symbiotic partnerships with microbes for metabolism, protection and resources. While some hosts evolve extreme dependence on their symbionts, others maintain facultative associations. Explaining this variation is fundamental to understanding when symbiosis can lead to new higher-level individuals, such as during the evolution of the eukaryotic cell.
View Article and Find Full Text PDFRecent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure.
View Article and Find Full Text PDFHeritable microbial symbionts can have important effects on many aspects of their hosts' biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by artificially transferring facultative symbionts from the grain aphid, Sitobion avenae, and five other aphid species into two clonal genotypes of S.
View Article and Find Full Text PDFBacterial symbiosis has played a fundamental role in the evolution of eukaryotes. However, we still know little about how cooperative relationships with bacteria originate, and why they form in some host species but not others. Facultative symbionts that are beneficial, but not essential, provide unique insights into these processes.
View Article and Find Full Text PDFOmnivory is extremely common in animals, yet theory predicts that when given a choice of resources specialization should be favored over being generalist. The evolution of a feeding phenotype involves complex interactions with many factors other than resource choice alone, including environmental heterogeneity, resource quality, availability, and interactions with other organisms. We applied an evolutionary simulation model to examine how ecological conditions shape evolution of feeding phenotypes (e.
View Article and Find Full Text PDFFacultative or "secondary" symbionts are common in eukaryotes, particularly insects. While not essential for host survival, they often provide significant fitness benefits. It has been hypothesized that secondary symbionts form a "horizontal gene pool" shuttling adaptive genes among host lineages in an analogous manner to plasmids and other mobile genetic elements in bacteria.
View Article and Find Full Text PDF1. Most trophic interaction theory assumes that all predators are an abstract form of risk to which prey respond in a quantitatively similar manner. This conceptualization can be problematic because recent empirical work demonstrates that variation in the responses of prey to different predators can play a key role in structuring communities and regulating ecosystem function.
View Article and Find Full Text PDFIt has been hypothesized that the success of a biological control introduction is, in part, dependent on the ability of the control agent to become established in its new environment or to its new population of hosts through local adaptation. Despite this, few studies have investigated the influence of the recent coevolutionary history of pest species and natural enemies on the efficacy of biological control agents, especially for agents that are mass-reared for release in agriculture. We investigate the evolutionary potential of a biological control agent Aphidius ervi to adapt to a key pest species, the foxglove aphid Aulacorthum solani, through components essential to the evolution of parasitoid virulence.
View Article and Find Full Text PDFForaging models are useful tools for generating predictions on predator-prey interactions, such as habitat or diet choice. However, the majority of studies attempting to explain adaptive behaviour using optimality criteria have assumed that there is no trait (e.g.
View Article and Find Full Text PDFLocal adaptation is promoted when habitat or mating preferences reduce gene flow between populations. However, gene flow is not only a function of dispersal but also of the success of migrants in their new habitat. In this study I investigated mating preference in conjunction with phenotypic plasticity using Aphidius parasitoids adapted to different host species.
View Article and Find Full Text PDFThe diversity of parasitic insects remains one of the most conspicuous patterns on the planet. The principal factor thought to contribute to differentiation of populations and ultimately speciation is the intimate relationship parasites share with hosts and the potential for disruptive selection associated with using different host species. Traits that generate this diversity have been an intensely debated topic of central importance to the evolution of specialization and maintenance of ecological diversity.
View Article and Find Full Text PDFFlexibility in adult body size allows generalist parasitoids to use many host species at a cost of producing a range of adult sizes. Consequently, host selection behaviour must also maintain a level of flexibility as adult size is related to capture efficiency. In the present study, we investigated covariance of two plastic traits--size at pupation and host size selection behaviour-using Aphidius ervi reared on either Acyrthosiphon pisum or Aulacorthum solani, generating females of disparate sizes.
View Article and Find Full Text PDF