Whether a tire crumb rubber (TCR) playground would expose children to potentially harmful chemicals such as heavy metals is an open question. The released metals available for pickup on the surface of TCR tiles was studied by accelerated 2-year aging of the TCRs in the NIST-SPHERE (National Institute of Standards and Technology Simulated Photodegradation via High Energy Radiant Exposure). The dermal contact was mimicked by a method of composite surface wiping from US Environmental Protection Agency throughout the weathering process.
View Article and Find Full Text PDFThe toxicity and bioavailability of arsenic is heavily dependent on its speciation. Therefore, robust and accurate methods are needed to determine arsenic speciation profiles for materials related to public health initiatives, such as food safety. Here, X-ray spectroscopies are attractive candidates as they provide , nondestructive analyses of solid samples without perturbation to the arsenic species therein.
View Article and Find Full Text PDFJ Food Compost Anal
November 2020
Marine organisms are vital sources of staple and functional food but are also the major dietary route of human exposure to total arsenic. We surveyed the total arsenic content and the mass fractions of hydrophilic arsenic species from five different marine food types cutting across the food chain from microalgae, macroalgae, bivalve clam, crustaceans and finfish. Total arsenic was determined using inductively coupled plasma-mass spectrometry (ICP-MS) while arsenic speciation analysis was performed using high-performance liquid chromatography (HPLC) coupled to ICP-MS as the detector.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
Rapid, reliable, and sensitive detection of infection is central to malaria control and elimination. Many Malaria Rapid Diagnostic Tests (RDTs) developed for this purpose depend upon immunoassays that can be improved by advances in bound antibody sensor technology. In a previous study, immuno-polymerase chain reaction (PCR) was shown to provide highly sensitive detection of lactate dehydrogenase (PfLDH) in monoclonal antibody (mAb) sandwich assays.
View Article and Find Full Text PDFSetting regulatory limits for arsenic in food is complicated, owing to the enormous diversity of arsenic metabolism in humans, lack of knowledge about the toxicity of these chemicals, and lack of accurate arsenic speciation data on foodstuffs. Identification and quantification of the toxic arsenic compounds are imperative to understanding the risk associated with exposure to arsenic from dietary intake, which, in turn, underscores the need for speciation analysis of the food. Arsenic speciation in seafood is challenging, owing to its existence in myriads of chemical forms and oxidation states.
View Article and Find Full Text PDFDiet, especially seafood, is the main source of arsenic exposure for humans. The total arsenic content of a diet offers inadequate information for assessment of the toxicological consequences of arsenic intake, which has impeded progress in the establishment of regulatory limits for arsenic in food. Toxicity assessments are mainly based on inorganic arsenic, a well-characterized carcinogen, and arsenobetaine, the main organoarsenical in seafood.
View Article and Find Full Text PDFA Standard Reference Material (SRM) of seaweed, SRM 3232 Kelp Powder (Thallus laminariae) has been developed to support food and dietary supplement measurements in compliance with the Food Safety Modernization Act (FSMA) and the Dietary Supplement Health and Education Act of 1994 (DSHEA). The material was characterized for nutritional minerals, arsenic species, isomers of vitamin K, proximates, and toxic elements. Kelp is a rich source of vitamins and minerals, and it is an excellent source of dietary iodine.
View Article and Find Full Text PDFA dietary supplement, kelp contains a significant amount of arsenic that is mostly arsenosugars. The determination of arsenosugars is difficult due to a lack of arsenosugar calibration standard, because arsenosugar compounds are not commercially available. This work reports the determination of arsenicals in a kelp extract with traceability to the International System of Units (SI).
View Article and Find Full Text PDFFor environmental studies assessing uptake of orally ingested engineered nanoparticles (ENPs), a key step in ensuring accurate quantification of ingested ENPs is efficient separation of the organism from ENPs that are either nonspecifically adsorbed to the organism and/or suspended in the dispersion following exposure. Here, we measure the uptake of 30 and 60 nm gold nanoparticles (AuNPs) by the nematode, Caenorhabditis elegans, using a sucrose density gradient centrifugation protocol to remove noningested AuNPs. Both conventional inductively coupled plasma mass spectrometry (ICP-MS) and single particle (sp)ICP-MS are utilized to measure the total mass and size distribution, respectively, of ingested AuNPs.
View Article and Find Full Text PDFMany coatings properties such as mechanical, electrical, and ultra violet (UV) resistance are greatly enhanced by the addition of nanoparticles, which can potentially increase the use of nanocoatings for many outdoor applications. However, because polymers used in all coatings are susceptible to degradation by weathering, nanoparticles in a coating may be brought to the surface and released into the environment during the life cycle of a nanocoating. Therefore, the goal of this study is to investigate the process and mechanism of surface degradation and potential particle release from a commercial nanosilica/polyurethane coating under accelerated UV exposure.
View Article and Find Full Text PDFThe National Institute of Standards and Technology is developing a kelp powder standard reference material (SRM) in support of dietary supplement measurements. Edible seaweeds such as kelp and laver consumed as diet or dietary supplement contain tens of mg/kg arsenic. The speciation information of arsenic in the seaweed should be provided because the total arsenic alone does not fully address the safety issue of the dietary supplement as the value assignment is originally intended.
View Article and Find Full Text PDFStandard Reference Material 3280 Multivitamin/ Multielement Tablets was issued by the National Institute of Standards and Technology in 2009, and has certified and reference mass fraction values for 13 vitamins, 26 elements, and two carotenoids. Elements were measured using two or more analytical methods at NIST with additional data contributed by collaborating laboratories. This reference material is expected to serve a dual purpose: to provide quality assurance in support of a database of dietary supplement products and to provide a means for analysts, dietary supplement manufacturers, and researchers to assess the appropriateness and validity of their analytical methods and the accuracy of their results.
View Article and Find Full Text PDFAnal Bioanal Chem
November 2013
Electrolytes in serum are important biomarkers for skeletal and cellular health. The levels of electrolytes are monitored by measuring the Ca, Mg, K, and Na in blood serum. Many reference methods have been developed for the determination of Ca, Mg, and K in clinical measurements; however, isotope dilution thermal ionization mass spectrometry (ID-TIMS) has traditionally been the primary reference method serving as an anchor for traceability and accuracy to these secondary reference methods.
View Article and Find Full Text PDFThe function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 μg/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin α2β1.
View Article and Find Full Text PDFWe report the development of a hyphenated instrument with the capacity to quantitatively characterize aqueous suspended gold nanoparticles (AuNPs) based on a combination of gas-phase size separation, particle counting, and elemental analysis. A customized electrospray-differential mobility analyzer (ES-DMA) was used to achieve real-time upstream size discrimination. A condensation particle counter and inductively coupled plasma mass spectrometer (ICP-MS) were employed as downstream detectors, providing information on number density and elemental composition, respectively, of aerosolized AuNPs versus the upstream size selected by ES-DMA.
View Article and Find Full Text PDFPerchlorate, an inorganic anion, has recently been recognized as an environmental contaminant by the US Environmental Protection Agency. Urine is the preferred matrix for assessment of human exposure to perchlorate. Although the measurement technique for perchlorate in urine was developed in 2005, the calibration and quality assurance aspects of the metrology infrastructure for perchlorate are still lacking in that there is no certified reference material (CRM) traceable to the International System of Units.
View Article and Find Full Text PDFIn this study, a prototypical thiolated organic ligand, 3-mercaptopropionic acid (MPA), was conjugated on gold nanoparticles (AuNPs), and packing density was measured on an ensemble-averaged basis using inductively coupled plasma optical emission spectrometry. The effects of sample preparation, including centrifugation and digestion, as well as AuNP size and concentration, on recovery were investigated. For AuNPs with diameters of 5, 10, 30, 60, and 100 nm, calculated packing density is independent of size, averaging 7.
View Article and Find Full Text PDFNIST has performed preliminary research on applying a calibration methodology based on the method of standard additions to the quantification of peptides via reverse-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry (RPLC-ICP-MS). A microwave-assisted lanthanide labeling procedure was developed and applied to derivatize peptides using the macrocyclic bifunctional chemical chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), which significantly improved the lanthanide labeling yield and reduced reaction times compared to benchtop labeling procedures. Biomolecular MS technologies of matrix-assisted laser desorption ionization (MALDI)-MS and electrospray ionization (ESI)-MS/MS were used in concert with ICP-MS to confirm the results of microwave labeling, sample cleanup and standard additions experiments for several test peptides.
View Article and Find Full Text PDFNondestructive analyses using a quadrupole inductively coupled plasma-mass spectrometer (ICP-QMS) and polarizing, multi-target, energy dispersive X-ray fluorescence (PEDXRF) with three-dimensional optics were conducted on Judean coins from the first century BCE and CE to determine the efficacy and limits of these methods for numismatic analyses of coins with a patina. Comparisons with destructive analyses and literature databases demonstrate their value even when corrosion is present. An outstanding question about the dating of Herod Agrippa I or II "canopy" coins that has significance to Biblical historians is used as a case study.
View Article and Find Full Text PDFThere are many important considerations during preclinical development of cancer nanomedicines, including: 1) unique aspects of animal study design; 2) the difficulties in evaluating biological potency, especially for complex formulations; 3) the importance of analytical methods that can determine platform stability in vivo, and differentiate bound and free active pharmaceutical ingredient (API) in biological matrices; and 4) the appropriateness of current dose scaling techniques for estimation of clinical first-in-man dose from preclinical data. Biologics share many commonalities with nanotechnology products with regard to complexity and biological attributes, and can, in some cases, provide context for dealing with these preclinical issues. In other instances, such as the case of in vivo stability analysis, new approaches are required.
View Article and Find Full Text PDFTwo independent liquid chromatography inductively coupled plasma-mass spectrometry (LC/ICP-MS) methods for the separation of arsenic species in urine have been developed with quantification by standard additions. Seven arsenic species have been quantified in a new NIST frozen human urine Standard Reference Material (SRM) 2669 Arsenic Species in Frozen Human Urine, Levels 1 and 2. The species measured were: arsenite (As(III)), arsenate (As(V)), monomethylarsonate (MMA), dimethylarsinate (DMA), arsenobetaine (AB), arsenocholine (AC), and trimethylarsine oxide (TMAO).
View Article and Find Full Text PDFBulk silicon-germanium (SiGe) alloys and two SiGe thick films (4 and 5 microm) on Si wafers were tested with the electron probe microanalyzer (EPMA) using wavelength dispersive spectrometers (WDS) for heterogeneity and composition for use as reference materials needed by the microelectronics industry. One alloy with a nominal composition of Si0.86Ge0.
View Article and Find Full Text PDFThe certification of Standard Reference Material (SRM is a registered trademark of NIST) 3103a As Spectrometric Solution is based on the gravimetric preparation value that is verified by inductively coupled plasma optical emission spectrometry (ICP-OES) measurements. A disagreement between the gravimetric and the spectrometric values for a batch of As calibration solutions led to the discovery that the solutions contained a mixture of trivalent and pentavalent As species and that the pentavalent species was approximately 8% more sensitive than the trivalent species with ICP-OES determination. The kinetics of the reaction between As metal and nitric acid were studied, and the results were applied to develop a procedure that would consistently produce single-species pentavalent As standards, which eliminates As speciation as a source of measurement bias in the SRM certification process.
View Article and Find Full Text PDFThe detection limit is an important figure of merit for evaluating instrumentation and analytical methods. While the detection limit for techniques using linear calibration functions has been studied extensively, this fundamental metric has rarely been discussed for mass spectrometry that bases the calibration on the principle of isotope dilution. We have developed a formulation for the detection limit for isotope dilution mass spectrometry (IDMS) after a thorough analysis of the uncertainty of IDMS measurements.
View Article and Find Full Text PDF