Four methane-oxidizing bacteria, designated as strains WSC-6, WSC-7, SURF-1, and SURF-2, were isolated from Saddle Mountain Creek in southwestern Oklahoma, USA, and the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The strains were Gram-negative, motile, short rods that possessed intracytoplasmic membranes characteristic of type I methanotrophs. All four strains were oxidase-negative and weakly catalase-positive.
View Article and Find Full Text PDFBackground: During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms.
View Article and Find Full Text PDFParticulate methane monooxygenase (pMMO), a membrane-bound enzyme having three subunits (α, β, and γ) and copper-containing centers, is found in most of the methanotrophs that selectively catalyze the oxidation of methane into methanol. Active sites in the pMMO of OB3b were determined by docking the modeled structure with ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene. The docking energy between the modeled pMMO structure and ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene was -5.
View Article and Find Full Text PDFDecomposing cyanobacterial bloom-induced black blooms been seen as an issue in the management of freshwater ecosystems, but its effect on sulfate-reducing bacteria (SRB) in shallow freshwater lakes is not clear. The objective of this study is to present an in-depth investigation of black bloom effects on the activities and composition of SRB, as well as the interactions between SRB and other bacteria. Water and surface sediments samples were collected from a shallow freshwater lake during black and non-black blooms.
View Article and Find Full Text PDFGlobal warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes.
View Article and Find Full Text PDFBacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with during blooms in 12 lakes spanning four continents as an initial test of the hypothesized interactome.
View Article and Find Full Text PDFSediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment.
View Article and Find Full Text PDFRnf is a membrane protein complex that has been shown to be important in energy conservation. Here, Desulfovibrio alaskensis G20 and Rnf mutants of G20 were grown with different electron donor and acceptor combinations to determine the importance of Rnf in energy conservation and the type of ion gradient generated. The addition of the protonophore TCS strongly inhibited lactate-sulfate dependent growth whereas the sodium ionophore ETH2120 had no effect, indicating a role for the proton gradient during growth.
View Article and Find Full Text PDFIncreasing sulfate input has been seen as an issue in management of aquatic ecosystems, but its influences on eutrophic freshwater lakes is not clear. In this study, it was observed that increasing sulfate concentration without additional cyanobacterial bloom biomass (CBB) addition did not have an obvious effect on element cycling during 1-year continuous flow mesocosm experiments in which water and sediments were taken from a shallow eutrophic lake with sulfate levels near 1 mM. However, following addition of CBB to mesocosms, sulfate-reducing bacteria (SRB) were observed in the water column, and increasing numbers of SRB in the water column were associated with higher sulfate input.
View Article and Find Full Text PDFEnviron Sci Process Impacts
November 2015
Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS).
View Article and Find Full Text PDFZodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source.
View Article and Find Full Text PDFThis study investigated the interaction of the macrophyte Acorus calamus and sediment microbial fuel cells (SMFC) during the degradation of high molecular weight-polycyclic aromatic hydrocarbons (HMW-PAHs) in sediments. Over 367-days, the combination of macrophyte and SMFC led to an increase in pyrene and benzo[a]pyrene degradation rates by at least 70% compared to SMFC or macrophyte alone. While either the macrophyte or SMFC increased redox potential in sediments, redox potentials near the anode (approximately 6 cm depth) in the macrophyte-SMFC combination were markedly lower than that in the only macrophyte treatment.
View Article and Find Full Text PDFIn anaerobic environments, mutually beneficial metabolic interactions between microorganisms (syntrophy) are essential for oxidation of organic matter to carbon dioxide and methane. Syntrophic interactions typically involve a microorganism degrading an organic compound to primary fermentation by-products and sources of electrons (i.e.
View Article and Find Full Text PDFBacterial community composition of different sized aggregates within the Microcystis cyanobacterial phycosphere were determined during summer and fall in Lake Taihu, a eutrophic lake in eastern China. Bloom samples taken in August and September represent healthy bloom biomass, whereas samples from October represent decomposing bloom biomass. To improve our understanding of the complex interior structure in the phycosphere, bloom samples were separated into large (>100 µm), medium (10-100 µm) and small (0.
View Article and Find Full Text PDFCyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB) settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P) in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC), we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments.
View Article and Find Full Text PDFThe sulfate reducing bacterium Desulfovibrio alaskensis strain G20 can grow in lactate sulfate medium with up to 4 mM uranyl acetate. In order to identify the genes that are required for the growth of strain G20 at toxic levels of uranium(VI) (U(VI)), 5,760 transposon insertion mutants were screened for U(VI) resistance defects, and 24 of them showed loss of U(VI) resistance in lactate sulfate medium with 2 mM uranyl acetate. In the 24 mutants, 23 genes were disrupted by transposon insertions, and one transposon is located in a non-coding region.
View Article and Find Full Text PDFDue to their adjacent location in the genomes of Desulfovibrio species and their potential for formation of an electron transfer pathway in sulfate-reducing prokaryotes, adenosyl phosphosulfate (APS) reductase (Apr) and quinone-interacting membrane-bound oxidoreductase (Qmo) have been thought to interact together during the reduction of APS. This interaction was recently verified in Desulfovibrio desulfuricans. Membrane proteins of Desulfovibrio vulgaris Hildenborough ΔqmoABCD JW9021, a deletion mutant, were compared to the parent strain using blue-native PAGE to determine whether Qmo formed a complex with Apr or other proteins.
View Article and Find Full Text PDFThe phylogenetic diversity of the microbial community assemblage of the carpet-like mucilaginous cyanobacterial blooms in the eutrophic Lake Taihu was investigated. 16S ribosomal DNA clone libraries produced from the DNA of cyanobacterial assemblages that had been washed to remove unattached bacteria contained only cyanobacteria. However, a further treatment which included grinding the freeze-dried material to physically detach cells followed by the removal of larger cells by filtration allowed us to detect a large variety of bacteria within the cyanobacterial bloom community.
View Article and Find Full Text PDFA polyurethane (PU) degrading bacterial strain MZA-75 was isolated from soil through enrichment technique. The bacterium was identified through 16S rRNA gene sequencing, the phylogenetic analysis indicated the strain MZA-75 belonged to genus Bacillus having maximum similarity with Bacillus subtilis strain JBE0016. The degradation of PU films by strain MZA-75 in mineral salt medium (MSM) was analyzed by scanning electron microscopy (SEM), fourier transform infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC).
View Article and Find Full Text PDFExtensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities.
View Article and Find Full Text PDFMicrobiology (Reading)
October 2011
Syntrophic growth involves the oxidation of organic compounds and subsequent transfer of electrons to an H(2)- or formate-consuming micro-organism. In order to identify genes involved specifically in syntrophic growth, a mutant library of Desulfovibrio alaskensis G20 was screened for loss of the ability to grow syntrophically with Methanospirillum hungatei JF-1. A collection of 20 mutants with an impaired ability to grow syntrophically was obtained.
View Article and Find Full Text PDFThe soil microbiome is responsible for mediating key ecological processes; however, little is known about its sensitivity to climate change. Observed increases in global temperatures and alteration to rainfall patterns, due to anthropogenic release of greenhouse gases, will likely have a strong influence on soil microbial communities and ultimately the ecosystem services they provide. Therefore, it is vital to understand how soil microbial communities will respond to future climate change scenarios.
View Article and Find Full Text PDF