Publications by authors named "Lee Kean Chuan"

This work aimed to study the thermal and crystalline properties of poly (1,4-phenylene sulfide)@carbon char nanocomposites. Coagulation-processed nanocomposites of polyphenylene sulfide were prepared using the synthesized mesoporous nanocarbon of coconut shells as reinforcement. The mesoporous reinforcement was synthesized using a facile carbonization method.

View Article and Find Full Text PDF

This study explores the potential of using cobalt ferrite (CF) nanoparticles grown in situ on eggshell membranes (ESM) to mitigate the increasing problem of electromagnetic interference (EMI). A simple carbonization process was adopted to synthesize CF nanoparticles on ESM. The study further examines the composites' surface morphology and chemical composition and evaluates their microwave absorption performance (MAP) at X-band frequency.

View Article and Find Full Text PDF

Erosion caused by the repeated impact of particles on the surface of a substance is a common wear method resulting in the gradual and continual loss of affected objects. It is a crucial problem in several modern industries because the surfaces of various products and materials are frequently subjected to destructively erosive situations. Polymers and their hybrid materials are suitable, in powdered form, for use as coatings in several different applications.

View Article and Find Full Text PDF

The utilization of metal-oxide nanoparticles in enhanced oil recovery (EOR) has generated considerable research interest to increase the oil recovery. Among these nanoparticles, alumina nanoparticles (AlO-NPs) have proved promising in improving the oil recovery mechanism due to their prominent thermal properties. However, more significantly, these nanoparticles, coupled with electromagnetic (EM) waves, can be polarized to reduce water/oil mobility ratio and create disturbances at the oil/nanofluid interface, so that oil can be released from the reservoir rock surfaces and travelled easily to the production well.

View Article and Find Full Text PDF