Publications by authors named "Lee Huntington"

We report cutting edge performance results on a single node hybrid CPU-multi-GPU implementation of the spin adapted Density Matrix Renormalization Group (DMRG) method on current state-of-the-art NVIDIA DGX-H100 architectures. We evaluate the performance of the DMRG electronic structure calculations for the active compounds of the FeMoco, the primary cofactor of nitrogenase, and cytochrome P450 (CYP) enzymes with complete active space (CAS) sizes of up to 113 electrons in 76 orbitals [CAS(113, 76)] and 63 electrons in 58 orbitals [CAS(63, 58)], respectively. We achieve 246 teraFLOPS of sustained performance, an improvement of more than 2.

View Article and Find Full Text PDF

The method of increments and frozen natural orbital (MI-FNO) framework is introduced to help expedite the application of noisy, intermediate-scale quantum (NISQ) devices for quantum chemistry simulations. The MI-FNO framework provides a systematic reduction of the occupied and virtual orbital spaces for quantum chemistry simulations. The correlation energies of the resulting increments from the MI-FNO reduction can then be solved by various algorithms, including quantum algorithms such as the phase estimation algorithm and the variational quantum eigensolver (VQE).

View Article and Find Full Text PDF

A spin adapted configuration interaction scheme is proposed for the evaluation of ionization potentials in high spin open shell reference functions. There are three different ways to remove an electron from such a reference, including the removal of an alpha or a beta electron from doubly occupied or an alpha electron from singly occupied molecular orbitals. Ionization operators are constructed for each of these cases, and the resulting second quantized expressions are implemented using an automated code generator environment.

View Article and Find Full Text PDF

The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals.

View Article and Find Full Text PDF

In this work, the automated generator environment for ORCA (ORCA-AGE) is described. It is a powerful toolchain for the automatic implementation of wavefunction-based quantum chemical methods. ORCA-AGE consists of three main modules: (1) generation of "raw" equations from a second quantized Ansatz for the wavefunction, (2) factorization and optimization of equations, and (3) generation of actual computer code.

View Article and Find Full Text PDF

In this work, several variations of the multireference equation of motion (MR-EOM) methodology are investigated for the calculation of excitation spectra. These variants of MR-EOM are characterized by the following aspects: (1) the operators included in the sequence of similarity transformations of the molecular electronic Hamiltonian, (2) whether permutational symmetries (i.e.

View Article and Find Full Text PDF

This paper presents the first application of the multireference equation of motion coupled-cluster (MR-EOMCC) approach to the calculation and characterization of excitation energies of transition metal complexes. The calculated MR-EOM excitation energies are compared with experimental UV/Vis. band maxima, Brueckner based similarity transformed equation of motion (STEOM) calculations and Brueckner based equation of motion coupled cluster (EOM-CCSD(T)) calculations, as well as results calculated with other methods from the literature.

View Article and Find Full Text PDF

The novel multireference equation-of-motion coupled-cluster (MREOM-CC) approaches provide versatile and accurate access to a large number of electronic states. The methods proceed by a sequence of many-body similarity transformations and a subsequent diagonalization of the transformed Hamiltonian over a compact subspace. The transformed Hamiltonian is a connected entity and preserves spin- and spatial symmetry properties of the original Hamiltonian, but is no longer Hermitean.

View Article and Find Full Text PDF

We have recently introduced a parameterized coupled-cluster singles and doubles model (pCCSD(α, β)) that consists of a bivariate parameterization of the CCSD equations and is inspired by the coupled electron pair approximations. In our previous work, it was demonstrated that the pCCSD(-1, 1) method is an improvement over CCSD for the calculation of geometries, harmonic frequencies, and potential energy surfaces for single bond-breaking. In this paper, we find suitable pCCSD parameters for applications in reaction thermochemistry and thermochemical kinetics.

View Article and Find Full Text PDF

The primary characteristics of single reference coupled-cluster (CC) theory are size-extensivity and size-consistency, invariance under orbital rotations of the occupied or virtual space, the exactness of CC theory for N electron systems when the cluster operator is truncated to N-tuple excitations, and the relative insensitivity of CC theory to the choice of the reference determinant. In this work, we propose a continuous class of methods which display the desirable features of the coupled-cluster approach with single and double excitations (CCSD). These methods are closely related to the CCSD method itself and are inspired by the coupled electron pair approximation (CEPA).

View Article and Find Full Text PDF

This paper reviews 33 evaluations of Healthy Families America sites, with emphasis on 15 studies that include a control or comparison group. Outcome domains include child health and development, maternal life course, parenting, and child maltreatment. Parenting outcomes (e.

View Article and Find Full Text PDF