Microsatellite sequences have an enhanced susceptibility to mutation, and can act as sentinels indicating elevated mutation rates and increased risk of cancer. The probability of mutant fixation within the intestinal epithelium is dictated by a combination of stem cell dynamics and mutation rate. Here, we exploit this relationship to infer microsatellite mutation rates.
View Article and Find Full Text PDFBreast cancer is the most common cancer in females. The number of years menstruating and length of an individual menstrual cycle have been implicated in increased breast cancer risk. At present, the proliferative changes within an individual reproductive cycle or variations in the estrous cycle in the normal mammary gland are poorly understood.
View Article and Find Full Text PDFCellular dormancy and heterogeneity in cell cycle length provide important explanations for treatment failure after adjuvant therapy with S-phase cytotoxics in colorectal cancer (CRC), yet the molecular control of the dormant versus cycling state remains unknown. We sought to understand the molecular features of dormant CRC cells to facilitate rationale identification of compounds to target both dormant and cycling tumor cells. Unexpectedly, we demonstrate that dormant CRC cells are differentiated, yet retain clonogenic capacity.
View Article and Find Full Text PDFObjective: To study whether methylated CpG-island (CGI) amplification coupled with microarray (MCAM) can be used to generate DNA (deoxyribonucleic acid) methylation profiles from single human blastocysts.
Design: A pilot microarray study with methylated CpG-island amplification applied to human blastocyst genomic DNA and hybridized on CpG-island microarrays.
Setting: University research laboratory.
Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context.
View Article and Find Full Text PDFBackground: Cells in some tissues acquire a polarisation in the plane of the tissue in addition to apical-basal polarity. This polarisation is commonly known as planar cell polarity and has been found to be important in developmental processes, as planar polarity is required to define the in-plane tissue coordinate system at the cellular level.
Results: We have built an in-silico functional model of cellular polarisation that includes cellular asymmetry, cell-cell signalling and a response to a global cue.
During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell-cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical-basal (A/B) polarity.
View Article and Find Full Text PDFCancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells.
View Article and Find Full Text PDFBackground: Extra-cellular microRNAs have been identified within blood and their profiles reflect various pathologies; therefore they have potential as disease biomarkers. Our aim was to investigate how circulating microRNA profiles change during cancer treatment. Our hypothesis was that tumour-related profiles are lost after tumour resection and therefore that comparison of profiles before and after surgery would allow identification of biomarker microRNAs.
View Article and Find Full Text PDFBackground: Cellular ATP levels are generated by glucose-stimulated mitochondrial metabolism and determine metabolic responses, such as glucose-stimulated insulin secretion (GSIS) from the β-cells of pancreatic islets. We describe an analysis of the evolutionary processes affecting the core enzymes involved in glucose-stimulated insulin secretion in mammals. The proteins involved in this system belong to ancient enzymatic pathways: glycolysis, the TCA cycle and oxidative phosphorylation.
View Article and Find Full Text PDF