Publications by authors named "Lee Haynes"

Mitosis, the accurate segregation of duplicated genetic material into what will become two new daughter cells, is accompanied by extensive membrane remodelling and membrane trafficking activities. Early in mitosis, adherent cells partially detach from the substratum, round up and their surface area decreases. This likely results from an endocytic uptake of plasma membrane material.

View Article and Find Full Text PDF

The transformation of a single fertilised egg into an adult human consisting of tens of trillions of highly diverse cell types is a marvel of biology. The expansion is largely achieved by cell duplication through the process of mitosis. Mitosis is essential for normal growth, development, and tissue repair and is one of the most tightly regulated biological processes studied.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear.

View Article and Find Full Text PDF

Mitosis defects can lead to premature ageing and cancer. Understanding mitosis regulation therefore has important implications for human disease. Early data suggested that calcium (Ca) signals could influence mitosis, but these have hitherto not been observed in mammalian cells.

View Article and Find Full Text PDF

Unlabelled: Activation of trypsinogen (formation of trypsin) inside the pancreas is an early pathological event in the development of acute pancreatitis. In our previous studies we identified the activation of trypsinogen within endocytic vacuoles (EVs), cellular organelles that appear in pancreatic acinar cells treated with the inducers of acute pancreatitis. EVs are formed as a result of aberrant compound exocytosis and subsequent internalization of post-exocytic structures.

View Article and Find Full Text PDF

Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca also plays a key role in synapses as the trigger for fast neurotransmitter release.

View Article and Find Full Text PDF

FF-ATP synthase inhibitory factor 1 (IF1) inhibits the reverse mode of FF-ATP synthase, and therefore protects cellular ATP content at the expense of accelerated loss of mitochondrial membrane potential (ΔΨm). There is considerable variability in IF1 expression and its influence on bioenergetics between different cell types. High levels of IF1 in a number of cancers have been linked to increased glycolysis, resistance to cell death, increased migration and proliferation.

View Article and Find Full Text PDF

Key Points: Giant trypsin-containing endocytic vacuoles are formed in pancreatic acinar cells stimulated with inducers of acute pancreatitis. F-actin envelops endocytic vacuoles and regulates their properties. Endocytic vacuoles can rupture and release their content into the cytosol of acinar cells.

View Article and Find Full Text PDF

The junctions between the endoplasmic reticulum and the plasma membrane are essential platforms for the activation of store-operated Ca influx. These junctions have specific dimensions and are nonuniformly distributed in polarized cells. The mechanisms involved in the formation of the junctions are currently undergoing vigorous investigation, and significant progress was attained in this research area during the last 10 years.

View Article and Find Full Text PDF

Dystonia is a neurological movement disorder that forces the body into twisting, repetitive movements or sometimes painful abnormal postures. With the advent of next-generation sequencing technologies, the homozygous mutations T71N and A190T in the neuronal calcium sensor (NCS) hippocalcin were identified as the genetic cause of primary isolated dystonia (DYT2 dystonia). However, the effect of these mutations on the physiological role of hippocalcin has not yet been elucidated.

View Article and Find Full Text PDF

Neuronal calcium sensor-1 (NCS-1) mediates changes in cellular function by regulating various target proteins. Many potential targets have been identified but the physiological significance of only a few has been established. Upon temperature elevation, Caenorhabditis elegans exhibits reversible paralysis.

View Article and Find Full Text PDF

Disconnection of a cell from its epithelial neighbours and the formation of a mesenchymal phenotype are associated with profound changes in the distribution of cellular components and the formation of new cellular polarity. We observed a dramatic redistribution of inositol trisphosphate receptors (IP3Rs) and stromal interaction molecule 1 (STIM1)-competent endoplasmic reticulum-plasma membrane junctions (ER-PM junctions) when pancreatic ductal adenocarcinoma (PDAC) cells disconnect from their neighbours and undergo individual migration. In cellular monolayers IP3Rs are juxtaposed with tight junctions.

View Article and Find Full Text PDF

Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site.

View Article and Find Full Text PDF

Calcium and phosphoinositide signaling regulate cell division in model systems, but their significance in mammalian cells is unclear. Calcium-binding protein-7 (CaBP7) is a phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ) inhibitor required during cytokinesis in mammalian cells, hinting at a link between these pathways. Here we characterize a novel association of CaBP7 with lysosomes that cluster at the intercellular bridge during cytokinesis in HeLa cells.

View Article and Find Full Text PDF

Changes in the intracellular free calcium concentration ([Ca²⁺]i) in neurons regulate many and varied aspects of neuronal function over time scales from microseconds to days. The mystery is how a single signalling ion can lead to such diverse and specific changes in cell function. This is partly due to aspects of the Ca²⁺ signal itself, including its magnitude, duration, localisation and persistent or oscillatory nature.

View Article and Find Full Text PDF

In neurons, entry of extracellular calcium (Ca(2+)) into synaptic terminals through Cav2.1 (P/Q-type) Ca(2+) channels is the driving force for exocytosis of neurotransmitter-containing synaptic vesicles. This class of Ca(2+) channel is, therefore, pivotal during normal neurotransmission in higher organisms.

View Article and Find Full Text PDF

Background: Intracellular Ca2+ regulates many aspects of neuronal function through Ca2+ binding to EF hand-containing Ca2+ sensors that in turn bind target proteins to regulate their function. Amongst the sensors are the neuronal calcium sensor (NCS) family of proteins that are involved in multiple neuronal signalling pathways. Each NCS protein has specific and overlapping targets and physiological functions and specificity is likely to be determined by structural features within the proteins.

View Article and Find Full Text PDF

We demonstrated that increasing intracellular cAMP concentrations result in the inhibition of migration of PANC-1 and other pancreatic ductal adenocarcinoma (PDAC) cell types. The rise of cAMP was accompanied by rapid and reversible cessation of ruffling, by inhibition of focal adhesion turnover and by prominent loss of paxillin from focal adhesions. All these phenomena develop rapidly suggesting that cAMP effectors have a direct influence on the cellular migratory apparatus.

View Article and Find Full Text PDF

We demonstrated three novel forms of dynamic behaviour of junctions between the ER (endoplasmic reticulum) and the PM (plasma membrane) in migrating cancer cells: saltatory formation, long-distance sliding and dissolution. The individual ER-PM junctions formed near the leading edge of migrating cells (usually within 0.5 μm of polymerized actin and close to focal adhesions) and appeared suddenly without sliding from the interior of the cell.

View Article and Find Full Text PDF

Introduction: Hematopoietic stem cell transplantation, which requires accurate enumeration of stem cells, is routinely used in clinical settings. Flow cytometry provides a qualitative and quantitative assessment of CD34⁺ cells. Precision, linearity, and stability of the novel BD™ Stem Cell Enumeration (SCE) Kit were evaluated on two flow cytometry platforms using a modified ISHAGE gating strategy and including a viability dye for data acquisition and analysis.

View Article and Find Full Text PDF

Distinct spatiotemporal Ca2+ signalling events regulate fundamental aspects of eukaryotic cell physiology. Complex Ca2+ signals can be driven by release of Ca2+ from intracellular organelles that sequester Ca2+ such as the ER (endoplasmic reticulum) or through the opening of Ca2+-permeable channels in the plasma membrane and influx of extracellular Ca2+. Late endocytic pathway compartments including late-endosomes and lysosomes have recently been observed to sequester Ca2+ to levels comparable with those found within the ER lumen.

View Article and Find Full Text PDF

Calcium-binding protein 7 (CaBP7) is a member of the calmodulin (CaM) superfamily that harbors two high affinity EF-hand motifs and a C-terminal transmembrane domain. CaBP7 has been previously shown to interact with and modulate phosphatidylinositol 4-kinase III-β (PI4KIIIβ) activity in in vitro assays and affects vesicle transport in neurons when overexpressed. Here we show that the N-terminal domain (NTD) of CaBP7 is sufficient to mediate the interaction of CaBP7 with PI4KIIIβ.

View Article and Find Full Text PDF

The mammalian central nervous system (CNS) exhibits a remarkable ability to process, store, and transfer information. Key to these activities is the use of highly regulated and unique patterns of calcium signals encoded by calcium channels and decoded by families of specific calcium-sensing proteins. The largest family of eukaryotic calcium sensors is those related to the small EF-hand containing protein calmodulin (CaM).

View Article and Find Full Text PDF

Calcium signalling plays a crucial role in the control of neuronal function and plasticity. Changes in neuronal Ca2+ concentration are detected by Ca2+-binding proteins that can interact with and regulate target proteins to modify their function. Members of the neuronal calcium sensor (NCS) protein family have multiple non-redundant roles in the nervous system.

View Article and Find Full Text PDF