The initial setting of telomere length during early life in each individual has a major influence on lifetime risk of aging-associated diseases; however there is limited knowledge of biological signals that regulate inheritance of telomere length, and whether it is modifiable is not known. We now show that when mitochondrial activity is disrupted in mouse zygotes, via exposure to 20% O or rotenone, telomere elongation between the 8-cell and blastocyst stage is impaired, with shorter telomeres apparent in the pluripotent Inner Cell Mass (ICM) and persisting after organogenesis. Identical defects of elevated mtROS in zygotes followed by impaired telomere elongation, occurred with maternal obesity or advanced age.
View Article and Find Full Text PDFHistones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance.
View Article and Find Full Text PDFImmunofluorescence microscopy is a powerful technique using fluorescently labelled antibodies which can be used to visualize proteins in the nucleus. A key advantage of this method is that it can provide insight into the spatial organization and the localization of nuclear proteins, which can provide elucidation of their function. Here, we provide a protocol for immunofluorescence staining in the nucleus, which has successfully been used to visualize histone modifications and nuclear bodies in human and mouse B lymphocytes, using as few as 1 × 10-5 × 10 cells.
View Article and Find Full Text PDFATR-X (alpha thalassemia, mental retardation, X-linked) syndrome features genital and testicular abnormalities including atypical genitalia and small testes with few seminiferous tubules. Our mouse model recapitulated the testicular defects when was deleted in Sertoli cells (ScKO) which displayed G2/M arrest and apoptosis. Here, we investigated the mechanisms underlying these defects.
View Article and Find Full Text PDFUtility of PI3Kα inhibitors like BYL719 is limited by the acquisition of genetic and non-genetic mechanisms of resistance which cause disease recurrence. Several combination therapies based on PI3K inhibition have been proposed, but a way to systematically prioritize them for breast cancer treatment is still missing. By integrating published and in-house studies, we have developed in silico models that quantitatively capture dynamics of PI3K signaling at the network-level under a BYL719-sensitive versus BYL719 resistant-cell state.
View Article and Find Full Text PDFBackground: Point mutations in histone variant H3.3 (H3.3K27M, H3.
View Article and Find Full Text PDFPediatric high grade gliomas (HGG) are lethal tumors which are currently untreatable. A number of recent studies have provided much needed insights into the mutations and mechanisms which drive oncogenesis in pediatric HGGs. It is now clear that mutations in chromatin proteins, particularly H3.
View Article and Find Full Text PDFHistone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved.
View Article and Find Full Text PDFRegulatory elements (REs) consist of enhancers and promoters that occupy a significant portion of the noncoding genome and control gene expression programs either in or in Putative REs have been identified largely based on their regulatory features (co-occupancy of ESC-specific transcription factors, enhancer histone marks, and DNase hypersensitivity) in mouse embryonic stem cells (mESCs). However, less has been established regarding their regulatory functions in their native context. We deployed and regulatory elements scanning through saturating mutagenesis and sequencing (ctSCAN-SMS) to target elements within the ∼12-kb -region (REs; CREs) of the gene locus, as well as genome-wide 2,613 high-confidence REs (TREs), in mESCs.
View Article and Find Full Text PDFBackground: Current guidelines highlight the importance of accurate staging in the management and prognostication of high risk primary prostate cancer. Conventional radiologic imaging techniques are insufficient to reliably detect lymph node metastases in prostate cancer. Despite promising results, there is limited published data on the diagnostic accuracy of PSMA PET-CT to assess local nodal metastases prior to radical prostatectomy.
View Article and Find Full Text PDFAn array of oncogenic histone point mutations have been identified across a number of different cancer studies. It has been suggested that some of these mutant histones can exert their effects by inhibiting epigenetic writers. Here, we report that the H3.
View Article and Find Full Text PDFLiver cirrhotic patients suffer from a seemingly unpredictable risk of hepatocellular carcinoma (HCC). Here, an HCC risk score R (0 ≦ R ≦ 1) was derived from commonly tested haematological and biochemical parameters. In the score-derivation Taiwanese cohort (144 cirrhosis versus 48 HCC-remission patients), the score had an area-under-the-curve (AUC) of 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2018
ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation.
View Article and Find Full Text PDFAURKB (Aurora Kinase B) is a serine/threonine kinase better known for its role at the mitotic kinetochore during chromosome segregation. Here, we demonstrate that AURKB localizes to the telomeres in mouse embryonic stem cells, where it interacts with the essential telomere protein TERF1. Loss of AURKB function affects TERF1 telomere binding and results in aberrant telomere structure.
View Article and Find Full Text PDFGut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon.
View Article and Find Full Text PDFMaintenance of chromatin homeostasis involves proper delivery of histone variants to the genome. The interplay between different chaperones regulating the supply of histone variants to distinct chromatin domains remains largely undeciphered. We report a role of promyelocytic leukemia (PML) protein in the routing of histone variant H3.
View Article and Find Full Text PDFAlternative lengthening of telomeres (ALT) is an enigmatic process that allows certain cancers to maintain telomeres in the absence of telomerase. ALT cancers are frequently defective for ATRX/DAXX, a chaperone complex that deposits histone variant H3.3 at telomeres.
View Article and Find Full Text PDFNucleic Acids Res
February 2016
A number of studies have demonstrated that various components of the ATRX/DAXX/Histone H3.3 complex are important for heterochromatin silencing at multiple genomic regions. We provide an overview of the individual components (ATRX, DAXX and/or H3.
View Article and Find Full Text PDFIn addition to being a hallmark at active genes, histone variant H3.3 is deposited by ATRX at repressive chromatin regions, including the telomeres. It is unclear how H3.
View Article and Find Full Text PDFHuman ALT cancers show high mutation rates in ATRX and DAXX. Although it is well known that the absence of ATRX/DAXX disrupts H3.3 deposition at heterochromatin, its impact on H3.
View Article and Find Full Text PDFHistones package DNA and regulate epigenetic states. For the latter, probably the most important histone is H3. Mammals have three near-identical H3 isoforms: canonical H3.
View Article and Find Full Text PDFMechanisms to coordinate programs of highly transcribed genes required for cellular homeostasis and growth are unclear. Upstream binding transcription factor (UBTF, also called UBF) is thought to function exclusively in RNA polymerase I (Pol I)-specific transcription of the ribosomal genes. Here, we report that the two isoforms of UBTF (UBTF1/2) are also enriched at highly expressed Pol II-transcribed genes throughout the mouse genome.
View Article and Find Full Text PDF