Publications by authors named "Lee Dyer"

Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability.

View Article and Find Full Text PDF

The Deepwater Horizon (DWH) blowout and oil spill began on April 20, 2010 in the northern Gulf of Mexico (NGOM) deep sea (1525 m). Previous studies documented an impacted area of deep-sea floor totaling 321 km and were based on taxonomy at the macrofauna family level and the meiofauna major taxonomic level. In the present study, finer taxonomic resolution of the meiofauna community was employed, specifically harpacticoid copepod family biodiversity.

View Article and Find Full Text PDF

Shifts in flowering time among plant communities as a result of climate change, including extreme weather events, are a growing concern. These plant phenological changes may affect the quantity and quality of food sources for specialized insect pollinators. Plant-pollinator interactions are threatened by habitat alterations and biodiversity loss, and changes in these interactions may lead to declines in flower visitors and pollination services.

View Article and Find Full Text PDF

Pathogens play a key role in insect population dynamics, contributing to short-term fluctuations in abundance as well as long-term demographic trends. Two key factors that influence the effects of entomopathogens on herbivorous insect populations are modes of pathogen transmission and larval host plants. In this study, we examined tritrophic interactions between a sequestering specialist lepidopteran, Euphydryas phaeton, and a viral pathogen, Junonia coenia densovirus, on its native host plant, Chelone glabra, and a novel host plant, Plantago lanceolata, to explore whether host plant mediates viral transmission, survival, and viral loads.

View Article and Find Full Text PDF

The hyperdiverse geometrid genus Hübner, estimated to encompass more than 1,000 species, is among the most species-rich genera in all of Lepidoptera. While the genus has attracted considerable attention from ecologists and evolutionary biologists in recent decades, limited progress has been made on its alpha taxonomy. This contribution focuses on the Olivacea clade, whose monophyly has been recognized previously through molecular analyses.

View Article and Find Full Text PDF

As bees' main source of protein and lipids, pollen is critical for their development, reproduction, and health. Plant species vary considerably in the macronutrient content of their pollen, and research in bee model systems has established that this variation both modulates performance and guides floral choice. Yet, how variation in pollen chemistry shapes interactions between plants and bees in natural communities is an open question, essential for both understanding the nutritional dynamics of plant-pollinator mutualisms and informing their conservation.

View Article and Find Full Text PDF

Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high-resolution climate data and a remotely sensed indicator of plant primary productivity.

View Article and Find Full Text PDF

A new species of the rarely collected neotropical microgastrine braconid wasp genus Nixon, represented previously by only a single described species, Nixon, was recovered by the Caterpillars and Parasitoids of the Eastern Andes in Ecuador inventory project. was reared from an unidentified species of arctiine Erebidae feeding on the common bamboo species Kunth at the Yanayacu Biological Station near Cosanga, Napo Province, Ecuador. The new species is described and diagnosed from using both morphological and DNA barcode data.

View Article and Find Full Text PDF

Intraspecific phytochemical variation across a landscape can cascade up trophic levels, potentially mediating the composition of entire insect communities. Surprisingly, we have little understanding of the processes that regulate and maintain phytochemical variation within species, likely because these processes are complex and operate simultaneously both temporally and spatially. To assess how phytochemistry varies within species, we tested the degree to which resource availability, contrasting soil type, and herbivory generate intraspecific chemical variation in growth and defense of the tropical shrub, Piper imperiale (Piperaceae).

View Article and Find Full Text PDF

The potential effects of climate change on plant reproductive phenology include asynchronies with pollinators and reductions in plant fitness, leading to extinction and loss of ecosystem function. In particular, plant phenology is sensitive to extreme weather events, which are occurring with increasing severity and frequency in recent decades and are linked to anthropogenic climate change and shifts in atmospheric circulation. For 15 plant species in a Venezuelan cloud forest, we documented dramatic changes in monthly flower and fruit community composition over a 35-year time series, from 1983 to 2017, and these changes were linked directly to higher temperatures, lower precipitation, and decreased soil water availability.

View Article and Find Full Text PDF

Species richness in tropical forests is correlated with other dimensions of diversity, including the diversity of plant-herbivore interactions and the phytochemical diversity that influences those interactions. Understanding the complexity of plant chemistry and the importance of phytochemical diversity for plant-insect interactions and overall forest richness has been enhanced significantly by the application of metabolomics to natural systems. The present work used proton nuclear magnetic resonance spectroscopy ( H-NMR) profiling of crude leaf extracts to study phytochemical similarity and diversity among Piper plants growing naturally in the Atlantic Rainforest of Brazil.

View Article and Find Full Text PDF

Insect herbivores are relatively specialized. Why this is so is not clear. We examine assumptions about associations between local abundance and dietary specialization using an 18-year data set of caterpillar-plant interactions in Ecuador.

View Article and Find Full Text PDF

The main environmental variables controlling benthic foraminiferal distributions were identified and used to assess their influence on ecological indices developed as predictors of Ecological Quality Status (EcoQS) in marine ecosystems. Gradient forest and random forest models were applied to assess the predictive value of a selection of abiotic (environmental) and biotic (foraminifera) variables in a costal marine area in the central Adriatic Sea (Italy). This approach yields evidence that the predictor variables sand, silt, Pollution Load Index, and TN have the greatest influence on the distribution of benthic foraminifera in this area.

View Article and Find Full Text PDF

Foundational hypotheses addressing plant-insect codiversification and plant defense theory typically assume a macroevolutionary pattern whereby closely related plants have similar chemical profiles. However, numerous studies have documented variation in the degree of phytochemical trait lability, raising the possibility that phytochemical evolution is more nuanced than initially assumed. We utilize proton nuclear magnetic resonance (H NMR) data, chemical classification, and double digest restriction-site associated DNA sequencing (ddRADseq) to resolve evolutionary relationships and characterize the evolution of secondary chemistry in the Neotropical plant clade Radula (Piper; Piperaceae).

View Article and Find Full Text PDF

Moths are the most taxonomically and ecologically diverse insect taxon for which there exist considerable time-series abundance data. There is an alarming record of decreases in moth abundance and diversity from across Europe, with rates varying markedly among and within regions. Recent reports from Costa Rica reveal steep cross-lineage declines of caterpillars, while other sites (Ecuador and Arizona, reported here) show no or only modest long-term decreases over the past two decades.

View Article and Find Full Text PDF

Deciphering the ecological roles of plant secondary metabolites requires integrative studies that assess both the allocation patterns of compounds and their bioactivity in ecological interactions. Secondary metabolites have been primarily studied in leaves, but many are unique to fruits and can have numerous potential roles in interactions with both mutualists (seed dispersers) and antagonists (pathogens and predators). We described 10 alkenylphenol compounds from the plant species Piper sancti-felicis (Piperaceae), quantified their patterns of intraplant allocation across tissues and fruit development, and examined their ecological role in fruit interactions.

View Article and Find Full Text PDF

The role of aquatic arthropod diversity and community interactions of larval mosquitoes are important for understanding mosquito population dynamics. We tested the effects of aquatic macrophyte diversity and habitat structural complexity in shaping the predator and competitor invertebrate communities associated with mosquito larvae. Experimental mesocosms were planted with live aquatic macrophytes and allowed to be naturally colonized by local invertebrates.

View Article and Find Full Text PDF

Reports of biodiversity loss have increasingly focused on declines in abundance and diversity of insects, but it is still unclear if substantive insect diversity losses are occurring in intact low-latitude forests. We collected 22 years of plant-caterpillar-parasitoid data in a protected tropical forest and found reductions in the diversity and density of insects that appear to be partly driven by a changing climate and weather anomalies. Results also point to the potential influence of variables not directly measured in this study, including changes in land-use in nearby areas.

View Article and Find Full Text PDF

The descriptive taxonomic study reported here is focused on , a species-rich genus of hymenopteran parasitoid wasps. The species were found within the framework of two independent long-term Neotropical caterpillar rearing projects: northwestern Costa Rica (Área de Conservación Guanacaste, ACG) and eastern Andes, Ecuador (centered on Yanayacu Biological Station, YBS). One hundred thirty-six new species of Ashmead are described and all of them are authored by Arias-Penna.

View Article and Find Full Text PDF

Fire is a keystone process that drives patterns of biodiversity globally. In frequently burned fire-dependent ecosystems, surface fire regimes allow for the coexistence of high plant diversity at fine scales even where soils are uniform. The mechanisms on how fire impacts groundcover community dynamics are, however, poorly understood.

View Article and Find Full Text PDF

Increases in data availability and geographic ranges of studies have allowed for more thorough tests of latitudinal gradients in trophic interactions, with numerous recent studies testing hypotheses that strength of interactions, herbivory, plant chemical defense, and dietary specialization all increase with decreasing latitude. We review the issues surrounding these latitudinal gradients, discuss some methodological challenges, and provide some caveats relevant to inferences from existing approaches. To examine some potential issues with studies on latitudinal gradients in dietary specialization, we simulate a latitudinal gradient of communities that increase in diversity and specialization towards the equator then test the power of different sampling designs for detecting the gradient.

View Article and Find Full Text PDF

Phytochemical traits are a key component of plant defense theory. Chemical ecology has been biased towards studying effects of individual metabolites even though effective plant defenses are comprised of diverse mixtures of metabolites. We tested the phytochemical landscape hypothesis, positing that trophic interactions are contingent upon their spatial location across a phytochemically diverse landscape.

View Article and Find Full Text PDF