Mathematical modelling applied to preclinical, clinical, and public health research is critical for our understanding of a multitude of biological principles. Biology is fundamentally heterogeneous, and mathematical modelling must meet the challenge of variability head on to ensure the principles of diversity, equity, and inclusion (DEI) are integrated into quantitative analyses. Here we provide a follow-up perspective on the DEI plenary session held at the 2023 Society for Mathematical Biology Annual Meeting to discuss key issues for the increased integration of DEI in mathematical modelling in biology.
View Article and Find Full Text PDFMany cancers, including glioblastoma (GBM), have a male-biased sex difference in incidence and outcome. The underlying reasons for this sex bias are unclear but likely involve differences in tumor cell state and immune response. This effect is further amplified by sex hormones, including androgens, which have been shown to inhibit anti-tumor T cell immunity.
View Article and Find Full Text PDFMorphometrics have been able to distinguish important features of glioblastoma from magnetic resonance imaging (MRI). Using morphometrics computed on segmentations of various imaging abnormalities, we show that the average and range of lacunarity and fractal dimension values across MRI slices can be prognostic for survival. We look at the repeatability of these metrics to multiple segmentations and how they are impacted by image resolution.
View Article and Find Full Text PDFBrain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full heterogeneity of the disease.
View Article and Find Full Text PDFImaging is central to the clinical surveillance of brain tumors yet it provides limited insight into a tumor's underlying biology. Machine learning and other mathematical modeling approaches can leverage paired magnetic resonance images and image-localized tissue samples to predict almost any characteristic of a tumor. Image-based modeling takes advantage of the spatial resolution of routine clinical scans and can be applied to measure biological differences within a tumor, changes over time, as well as the variance between patients.
View Article and Find Full Text PDFSampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution.
View Article and Find Full Text PDFIdentification of key phenotypic regions such as necrosis, contrast enhancement, and edema on magnetic resonance imaging (MRI) is important for understanding disease evolution and treatment response in patients with glioma. Manual delineation is time intensive and not feasible for a clinical workflow. Automating phenotypic region segmentation overcomes many issues with manual segmentation, however, current glioma segmentation datasets focus on pre-treatment, diagnostic scans, where treatment effects and surgical cavities are not present.
View Article and Find Full Text PDFAutomatic brain tumor segmentation is particularly challenging on magnetic resonance imaging (MRI) with marked pathologies, such as brain tumors, which usually cause large displacement, abnormal appearance, and deformation of brain tissue. Despite an abundance of previous literature on learning-based methodologies for MRI segmentation, few works have focused on tackling MRI skull stripping of brain tumor patient data. This gap in literature can be associated with the lack of publicly available data (due to concerns about patient identification) and the labor-intensive nature of generating ground truth labels for model training.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most aggressive primary brain tumor and can have cystic components, identifiable through magnetic resonance imaging (MRI). Previous studies suggest that cysts occur in 7-23% of GBMs and report mixed results regarding their prognostic impact. Using our retrospective cohort of 493 patients with first-diagnosis GBM, we carried out an exploratory analysis on this potential link between cystic GBM and survival.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most aggressive primary brain tumor with a short median survival. Tumor recurrence is a clinical expectation of this disease and usually occurs along the resection cavity wall. However, previous clinical observations have suggested that in cases of ischemia following surgery, tumors are more likely to recur distally.
View Article and Find Full Text PDFGlioblastomas (GBMs) are the most aggressive primary brain tumours and have no known cure. Each individual tumour comprises multiple sub-populations of genetically-distinct cells that may respond differently to targeted therapies and may contribute to disappointing clinical trial results. Image-localized biopsy techniques allow multiple biopsies to be taken during surgery and provide information that identifies regions where particular sub-populations occur within an individual GBM, thus providing insight into their regional genetic variability.
View Article and Find Full Text PDFEquation learning methods present a promising tool to aid scientists in the modeling process for biological data. Previous equation learning studies have demonstrated that these methods can infer models from rich datasets; however, the performance of these methods in the presence of common challenges from biological data has not been thoroughly explored. We present an equation learning methodology comprised of data denoising, equation learning, model selection and post-processing steps that infers a dynamical systems model from noisy spatiotemporal data.
View Article and Find Full Text PDFBackground: Sex is recognized as a significant determinant of outcome among glioblastoma patients, but the relative prognostic importance of glioblastoma features has not been thoroughly explored for sex differences.
Methods: Combining multi-modal MR images, biomathematical models, and patient clinical information, this investigation assesses which pretreatment variables have a sex-specific impact on the survival of glioblastoma patients (299 males and 195 females).
Results: Among males, tumor (T1Gd) radius was a predictor of overall survival (HR = 1.
We analyze the wave speed of the Proliferation Invasion Hypoxia Necrosis Angiogenesis (PIHNA) model that was previously created and applied to simulate the growth and spread of glioblastoma (GBM), a particularly aggressive primary brain tumor. We extend the PIHNA model by allowing for different hypoxic and normoxic cell migration rates and study the impact of these differences on the wave-speed dynamics. Through this analysis, we find key variables that drive the outward growth of the simulated GBM.
View Article and Find Full Text PDF