Publications by authors named "Lee Blaney"

Advanced oxidation processes are a desirable technology for treatment of contaminants of emerging concern. Nevertheless, conventional advanced oxidation of organophosphorus compounds releases inorganic phosphate, posing downstream concerns related to eutrophication. For this reason, we evaluated the ultraviolet light-activated calcium peroxide (UV/CaO) system for effective treatment of organophosphorus compounds and concurrent capture of the mineralization products, phosphate.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), one of the most frequently detected per- and polyfluoroalkyl substances (PFAS) occurring in soil, surface water, and groundwater near sites contaminated with aqueous film-forming foam (AFFF), has proven to be recalcitrant to many destructive remedies, including chemical oxidation. We investigated the potential to utilize microbially mediated reduction (bioreduction) to degrade PFOS and other PFAS through addition of a known dehalogenating culture, WBC-2, to soil obtained from an AFFF-contaminated site. A substantial decrease in total mass of PFOS (soil and water) was observed in microcosms amended with WBC-2 and chlorinated volatile organic compound (cVOC) co-contaminants - 46.

View Article and Find Full Text PDF

The adsorption process efficiently removes per- and polyfluoroalkyl substances (PFAS) from water, but managing exhausted adsorbents presents notable environmental and economic challenges. Conventional disposal methods, such as incineration, may reintroduce PFAS into the environment. Therefore, advanced regeneration techniques are imperative to prevent leaching during disposal and enhance sustainability and cost-effectiveness.

View Article and Find Full Text PDF

We investigated the fluorescent dissolved organic matter (FDOM) composition in two watersheds with variable land cover and wastewater infrastructure, including sanitary sewers and septic systems. A four-component parallel factor analysis model was constructed from 295 excitation-emission matrices recorded for stream samples to examine relationships between FDOM and geospatial parameters. The contributions of humic acid- and fulvic acid-like fluorescence components (e.

View Article and Find Full Text PDF

Failing sewer infrastructure introduces unknown quantities of raw wastewater into urban streams, raising human and ecological health concerns. To address this problem, we developed multilinear regressions that relate fluorescent dissolved organic matter to wastewater content. The models were constructed with the area-normalized regional volumes of excitation-emission matrices measured for mixtures of deionized water, surface water from a wastewater-impacted stream, wastewater from a sanitary sewer adjacent to the stream, and Suwannee River natural organic matter.

View Article and Find Full Text PDF

Previous studies have reported select contaminants of emerging concern (CECs) in limited areas of the Chesapeake Bay (USA), but no comprehensive efforts have been conducted. In this work, 43 antibiotics, 9 hormones, 11 UV filters, and sucralose, were measured in matched water, sediment, and oyster samples from 58 sites. The highest sucralose concentration was 3051 ng L in a subwatershed with 4.

View Article and Find Full Text PDF

Analytical limitations make it challenging to develop effective methodologies for understanding glyphosate-based herbicide levels in drinking water and groundwater. Due to their lack of chromophores and zwitterionic nature, glyphosate-based herbicides are difficult to detect using traditional methods. This paper offers a straightforward method for quantifying glyphosate, glufosinate, and aminomethylphosphonic acid (AMPA) via 9-fluorenylmethylchloroformate (FMOC-Cl) pre-column derivatization and analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

While many nutrient recovery technologies target liquid waste streams, new strategies are required for effective phosphorus recovery from solid waste. This study reports an innovative ligand-enabled Donnan dialysis process to recover orthophosphate (P(V)) from alum-laden waste activated sludge (WAS). Four ligands, namely acetate, citrate, ethylenediaminetetraacetate (EDTA), and oxalate, were evaluated for P(V) release from a synthetic sludge containing 5 mM P(V) and 25 mM Al(III) and a real, alum-laden WAS with similar contents.

View Article and Find Full Text PDF

17β-estradiol (E2) has been proved to control reproduction, sexual differentiation, and the development of the secondary sexual characteristics of vertebrate females. In decapod crustacean species, crustacean female sex hormone (CFSH), a protein hormone, is required for developing adult-specific ovigerous setae for embryo brooding and gonophores for mating at the blue crab puberty molting. However, it is unclear that whether the mode of CFSH action involves a vertebrate-type sex steroid hormone in crustaceans.

View Article and Find Full Text PDF

GenX, the ammonium salt of hexafluoropropylene oxide dimer acid, has been used as a replacement for perfluorooctanoic acid. Due to its widespread uses, GenX has been detected in waters around the world amid growing concerns about its persistence and adverse health effects. As relevant regulations are rapidly evolving, new technologies are needed to cost-effectively remove and degrade GenX.

View Article and Find Full Text PDF

Advanced oxidation processes (AOPs) are promising technologies for partial or complete mineralization of contaminants of emerging concern by highly reactive hydroxyl, hydroperoxyl, superoxide, and sulphate radicals. Detailed investigations and reviews have been reported for conventional AOP systems that have been installed in full-scale wastewater treatment plants. However, recent efforts have focused on the peroxymonosulphate, persulphate, catalytic ozonation, ultrasonication and hydrodynamic cavitation, gamma radiation, electrochemical oxidation, modified Fenton, and plasma-assisted AOPs.

View Article and Find Full Text PDF

Antibiotics are priority contaminants of emerging concern due to their pseudo-persistence in the environment and contribution to the development of antimicrobial resistance. In solution, antibiotics undergo (de)protonation reactions that affect their UV absorbance and, therefore, photolytic fate in natural and engineered systems. This study employed enhanced spectrophotometric methods to determine the acid dissociation constants (as pK values) and molar absorption coefficients for 12 fluoroquinolone, 9 sulfonamide, and 7 tetracycline antibiotics of environmental relevance.

View Article and Find Full Text PDF

The present work describes the development of a fully automated method based on online solid phase extraction (SPE)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous analysis of multiple classes of pesticides or metabolites in drinking water (DW), surface water (SW), and wastewater effluents (WWEs). The target list covers 111 pesticides or metabolites of various properties and families. LC-MS/MS and online SPE parameters were optimized with regard to the sorbent type, mobile phase composition, wash volume, and flowrate as well as the injection volume.

View Article and Find Full Text PDF

The widespread use of antibiotics has led to their ubiquitous presence in water and wastewater and raised concerns about antimicrobial resistance. Clinical antibiotic susceptibility assays have been repurposed to measure removal of antimicrobial activity during water and wastewater treatment processes. The corresponding protocols have mainly employed growth inhibition of Escherichia coli.

View Article and Find Full Text PDF

This study involved the monitoring and risk assessment of current-use pesticides in surface water from the northwestern section of the Taihu Lake Basin (China) in 2019. In particular, 114 current-use pesticides were measured in samples collected during four campaigns spread across the wet, dry, and normal seasons. Pesticide concentrations were measured by means of a novel analytical method involving online solid-phase extraction coupled to LC-MS/MS.

View Article and Find Full Text PDF

Due to the potential ecological and human health risks, pharmaceuticals and personal care products (PPCPs) are considered as contaminants of emerging concern. PPCPs can be discharged to the aquatic environment from various sources, including municipal wastewater treatment plants (WWTPs), animal feeding operations, hospitals, and pharmaceutical manufacturers. A major challenge to regional characterization of ecological and human health risks is identification of the environmental emissions of PPCPs.

View Article and Find Full Text PDF

Estrogenic hormones and organic ultraviolet-filters (UV-filters) have attracted increased attention as endocrine disrupting chemicals (EDCs) due to their potent estrogenicity and widespread occurrence in the environment. This study investigated the accumulation of three estrogenic hormones and five UV-filters in red swamp crayfish (Procambarus clarkii). Exposure experiments were conducted for 42 days with a mixture of EDCs at two environmentally-relevant design concentrations (i.

View Article and Find Full Text PDF

Carbonyl sulfide (COS) and carbon disulfide (CS2) are important atmospheric gases that are formed from organic sulfur precursors present in natural waters when exposed to sunlight. However, it remains unclear how specific water constituents, such as dissolved organic matter (DOM), affect COS and CS2 formation. To better understand the role of DOM, irradiation experiments were conducted in O2-free synthetic waters containing four different DOM isolates, acquired from freshwater to open ocean sources, and the sulfur-based amino acid, cysteine (CYS).

View Article and Find Full Text PDF

Ebselen (EBS), 2-phenyl-1,2-benzisoselenazol-3(2)-one, is an organoselenium pharmaceutical with antioxidant and anti-inflammatory properties. Furthermore, EBS is an excellent scavenger of reactive oxygen species. This property complicates conventional protocols for sensitizing and quenching reactive species because of potential generation of active intermediates that quickly react with EBS.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have emerged as a major concern in aquatic systems worldwide due to their widespread applications and health concerns. Perfluorooctanoic acid (PFOA) is one of the most-detected PFAS. Yet, a cost-effective technology has been lacking for the degradation of PFAS due to their resistance to conventional treatment processes.

View Article and Find Full Text PDF

New analytical methods are needed to efficiently measure the growing list of priority pharmaceuticals in environmental samples. In this regard, a rapid, sensitive, and robust method was developed for quantitation of 168 pharmaceuticals and pharmaceutical metabolites using solid-phase extraction (SPE) and liquid chromatography with tandem mass spectrometry. The extraction protocol and instrumental efficiency were specifically addressed to increase analytical workload and throughput.

View Article and Find Full Text PDF

This work describes development of a quick and accurate online solid-phase extraction (SPE) liquid chromatography tandem mass spectrometry method for simultaneous determination of 87 emerging organic compounds, including 22 per- and polyfluoroalkyl substances, 58 pharmaceuticals and personal care products, and 7 organophosphorus flame retardants, in diverse water matrices. Considering the wide range of physicochemical properties for the target contaminants, efficient analysis in one injection is challenging. Thus, key extraction and analytical parameters, including online SPE sorbent, mobile phase additives, sample pH, loading solvent pH and composition, injection volume, and valve-switching time, were systematically optimized.

View Article and Find Full Text PDF

The occurrence of antimicrobials and other pharmaceuticals in streams is increasingly being reported, yet the impacts of these contaminants of emerging concern on aquatic ecosystems are relatively unknown. Bacteria and fungi are vital components of stream environments and, therefore, exposure to antimicrobials may have important consequences for ecosystem services, such as carbon cycling. The objective of this study was to investigate how two antimicrobials, ciprofloxacin and climbazole, impact detrital biofilm metabolism in urban and rural streams.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed 13 UV-filters and 11 hormones in seawater, sediment, and coral tissues at 19 sites in Oahu, Hawaii, finding at least eight UV-filters present in all three environments.
  • The concentrations of UV-filters were generally low, with the highest concentrations observed at Waikiki beach, but minimal levels of hormones were detected, with most concentrations being below quantifiable limits.
  • The findings highlight the presence of UV-filters in coral tissue for the first time in U.S. coastal waters and will help inform future risk assessments regarding their impact on coral reefs.
View Article and Find Full Text PDF