1. Elaborate studies of cholesteryl ester transfer protein (CETP) polymorphisms and genetic deficiency in humans suggest direct links between CETP, high-density lipoprotein cholesterol (HDL-c) levels and coronary heart diseases. The hypothesis that CETP inhibition by small molecule inhibitors raises HDL-c has been validated clinically with structurally-diverse CETP inhibitors such as torcetrapib, anacetrapib, dalcetrapib and evacetrapib.
View Article and Find Full Text PDFCholesteryl ester transfer protein (CETP) inhibitors increase high density lipoprotein-cholesterol (HDL-C) in animals and humans, but whether CETP inhibition will be antiatherogenic is still uncertain. We tested the CETP inhibitor torcetrapib in rabbits fed an atherogenic diet at a dose sufficient to increase HDL-C by at least 3-fold (207 +/- 32 vs. 57 +/- 6 mg/dl in controls at 16 weeks).
View Article and Find Full Text PDF