Publications by authors named "Lee A Davies"

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

The development of lentiviral-based therapeutics is challenged by the high cost of current Good Manufacturing Practices (cGMP) production. Lentiviruses are enveloped viruses that capture a portion of the host cell membrane during budding, which then constitutes part of the virus particle. This process might lead to lipid and protein depletion in the cell membrane and affect cell viability.

View Article and Find Full Text PDF

We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models.

View Article and Find Full Text PDF

Non-viral aerosol gene therapy offers great potential for treating chronic lung diseases of the airways such as cystic fibrosis (CF). Early clinical trials showed that transgene expression in the airways was transient whereas maximal duration of transgene expression is essential in order to minimise the frequency of aerosol treatments. Improved vector design, such as careful selection of the promoter/enhancer, can lead to more persistent levels of transgene expression, but multiple factors affect expression in vivo.

View Article and Find Full Text PDF

Background: Lung delivery of plasmid DNA encoding the CFTR gene complexed with a cationic liposome is a potential treatment option for patients with cystic fibrosis. We aimed to assess the efficacy of non-viral CFTR gene therapy in patients with cystic fibrosis.

Methods: We did this randomised, double-blind, placebo-controlled, phase 2b trial in two cystic fibrosis centres with patients recruited from 18 sites in the UK.

View Article and Find Full Text PDF

Abstract Lung gene therapy is being evaluated for a range of acute and chronic diseases, including cystic fibrosis (CF). As these therapies approach clinical realization, it is becoming increasingly clear that the ability to efficiently deliver gene transfer agents (GTAs) to target cell populations within the lung may prove just as critical as the gene therapy formulation itself in terms of generating positive clinical outcomes. Key to the success of any aerosol gene therapy is the interaction between the GTA and nebulization device.

View Article and Find Full Text PDF

Lung pathology in cystic fibrosis is linked to dehydration of the airways epithelial surface which in part results from inappropriately raised sodium reabsorption through the epithelial sodium channel (ENaC). To identify a small-interfering RNA (siRNA) which selectively inhibits ENaC expression, chemically modified 21-mer siRNAs targeting human ENaCα were designed and screened. GSK2225745, was identified as a potent inhibitor of ENaCα mRNA (EC(50) (half maximal effective concentration) = 0.

View Article and Find Full Text PDF

Transcriptional control of transgene expression is crucial to successful gene therapy, yet few promoter/enhancer combinations have been tested in clinical trials. We created a simple, desktop computer database and populated it with promoter sequences from publicly available sources. From this database, we rapidly identified novel CpG-free promoter sequences suitable for use in non-inflammatory, non-viral in vivo gene transfer.

View Article and Find Full Text PDF

Clinical studies are underway for the aerosol delivery of plasmid DNA complexed with Genzyme Lipid GL67A to the lungs of patients with cystic fibrosis (CF). Plasmid vectors contain several functional elements all of which play a role in determining the efficacy of the final clinical product. To optimise the final plasmid, variations of CpG-free 5' enhancer elements and 3'UTR regions were inserted into a common CpG-free, plasmid backbone containing Luciferase or CFTR transgenes.

View Article and Find Full Text PDF

Aerosol gene therapy offers great potential for treating acquired and inherited lung diseases. For treatment of chronic lung diseases such as cystic fibrosis, asthma and emphysema, non-viral gene therapy will likely require repeated administration to maintain transgene expression in slowly dividing, or terminally differentiated, lung epithelial cells. When complexed with plasmid DNA (pDNA), the synthetic polymer, 25 kDa branched Polyethylenimine (PEI), can be formulated for aerosol delivery to the lungs.

View Article and Find Full Text PDF

Although there is a modest body of literature on the absorption of inhaled pharmaceuticals by normal lungs and some limited information from diseased lungs, there is still a surprising lack of mechanistic knowledge about the details of the processes involved. Where are molecules absorbed, what mechanisms are involved, how well are different lung regions penetrated, what are the determinants of metabolism and dissolution, and how best can one retard the clearance of molecules deposited in the lung or induce intracellular uptake by lung cells? Some general principles are evident: (1) small hydrophobic molecules are absorbed very fast (within tens of seconds) usually with little metabolism; (2) small hydrophilic molecules are absorbed fast (within tens of minutes), again with minimal metabolism; (3) very low water solubility of the drug can retard absorption; (4) peptides are rapidly absorbed but are significantly metabolized unless chemically protected against peptidases; (5) larger proteins are more slowly absorbed with variable bioavailabilities; and 6) insulin seems to be best absorbed distally in the lungs while certain antibodies appear to be preferentially absorbed in the upper airways. For local lung disease applications, and some systemic applications as well, many small molecules are absorbed much too fast for convenient and effective therapies.

View Article and Find Full Text PDF

Nonviral gene therapy utilizing plasmid DNA (pDNA) complexed with cationic lipids (lipoplexes) or cationic polymers (polyplexes) has demonstrated considerable potential for the treatment of a variety of diseases. However, progress toward clinical application is often delayed by the lack of reliable and scalable mixing of components sufficient to guarantee consistent performance in vivo. Attempts to improve and standardize mixing have been limited by the sensitivity of pDNA to shear-related degradation.

View Article and Find Full Text PDF

A major limitation of many self-assembling nonviral gene transfer formulations is that they are commonly prepared at relatively low component concentrations. While this typically has little impact on their use in cell culture, it can severely limit the progress of in vivo studies. In order to overcome this, we have developed a simple, scalable, pharmaceutically acceptable concentration method that has allowed us to increase the concentration of a commonly used pDNA/PEI formulation from 0.

View Article and Find Full Text PDF

Pulmonary delivery of plasmid DNA (pDNA)/cationic liposome complexes is associated with an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response and brief duration of transgene expression. We demonstrate that retention of even a single CpG in pDNA is sufficient to elicit an inflammatory response, whereas CpG-free pDNA vectors do not. Using a CpG-free pDNA expression vector, we achieved sustained (>or=56 d) in vivo transgene expression in the absence of lung inflammation.

View Article and Find Full Text PDF

Gene therapy is being investigated in the treatment of lung-related aspects of the genetic disease, Cystic fibrosis (CF). Clinical studies have demonstrated CF transmembrane conductance regulator (CFTR) expression in the airways of adults with CF using a variety of gene transfer agents. In utero gene therapy is an alternative approach that facilitates vector transduction of rapidly expanding populations of target cells while avoiding immune recognition of the vector.

View Article and Find Full Text PDF

Background: Existing methods of non-viral airway gene transfer suffer from low levels of efficiency. Electroporation has been used to enhance gene transfer in a range of tissues. Here we assess the usefulness of electroporation for enhancing gene transfer in the lungs of mice and sheep.

View Article and Find Full Text PDF

Background: Identification of the cell types transfected following gene transfer is an important factor in the selection of appropriate gene transfer agents (GTAs). Due to the relatively low gene expression mediated by non-viral GTAs, current methodologies for the detection and identification of transfected cells in the lung have proven insensitive and unreliable. We have investigated the use of the green fluorescent protein (GFP) to identify transfected cells in a mouse lung model.

View Article and Find Full Text PDF

Purpose: Naked plasmid DNA (pDNA) is a potential gene transfer agent for lung gene therapies but cannot be aerosolised without degradation using conventional nebulisation devices. This study investigated the viability of an alternative nebulisation technique, electrohydrodynamic (EHD) comminution for the aerosol delivery of naked DNA in vivo.

Methods: Naked pDNA was aerosolised using jet and ultrasonic nebulisers, and by EHD comminution.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: