Rare species present a challenge under changing environmental conditions as the genetic consequences of rarity may limit species ability to adapt to environmental change. To evaluate the evolutionary potential of a rare species, we assessed variation in traits important to plant fitness using multigenerational common garden experiments. Torrey pine, Parry, is one of the rarest pines in the world, restricted to one mainland and one island population.
View Article and Find Full Text PDFProvenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of 567 36-year-old pitch pine (Pinus rigida Mill.
View Article and Find Full Text PDFPremise Of The Study: Variation in a species is a blend of adaptive, random, and migratory responses. Pitch pine (Pinus rigida), a highly variable eastern conifer, has occupied multiple glacial refugia, whose harsh conditions favored adaptations enhancing subsequent dispersal and recolonization of newly deglaciated sites. We assessed phenotypic diversity in long-term growth trials to elucidate both the adaptations and likely refugia.
View Article and Find Full Text PDFPremise Of The Study: Fire in the New Jersey Pine Plains has selectively maintained a dwarf growth form of pitch pine (Pinus rigida), which is distinct from the surrounding tall forest of the Pine Barrens and has several other inherited adaptations that enable it to survive in an environment dominated by fire.
Methods: Pitch pine progeny from two Pine Plains sites, the West and East Pine Plains, were grown in common garden environments with progeny from two Pine Barrens stands, Batsto and Great Egg Harbor River. The tests were replicated in five locations: in New Jersey, Connecticut, two sites in Massachusetts, and Korea.
Premise Of The Study: Climate change may threaten endemic species with extinction, particularly relicts of the Arcto-Tertiary Forest, by elimination of their contemporary habitat. Projections of future habitat are necessary to plan for conservation of these species.
Methods: We used spline climatic models and modified Random Forests statistical procedures to predict suitable habitats for Brewer spruce (Picea breweriana), which is endemic to the Klamath Region of California and Oregon.
Premise Of The Study: Modeling the contemporary and future climate niche for rare plants is a major hurdle in conservation, yet such projections are necessary to prevent extinctions that may result from climate change. •
Methods: We used recently developed spline climatic models and modified Random Forests statistical procedures to predict suitable habitats of three rare, endangered spruces of Mexico and a spruce of the southwestern USA. We used three general circulation models and two sets of carbon emission scenarios (optimistic and pessimistic) for future climates.
Chihuahua spruce (Picea chihuahuana Martínez) is a montane subtropical conifer endemic to the Sierra Madre Occidental in northwestern México. Range-wide variation was investigated using maternally inherited mitochondrial (mtDNA) and paternally inherited chloroplast (cpDNA) DNA markers. Among the 16 mtDNA regions analysed, only two mitotypes were detected, while the study of six cpDNA microsatellite markers revealed eight different chlorotypes.
View Article and Find Full Text PDFBrewer spruce (Picea breweriana), a relict of the widespread Arcto-Tertiary forests, is now restricted to a highly fragmented range in the Klamath Region of California and Oregon. Expected heterozygosity for 26 isozyme loci, averaged over 10 populations, was 0.121.
View Article and Find Full Text PDFWe compared genetic diversity estimated from allozymes and from random amplified polymorphic DNA (RAPDs) in a sample of 210 Great Basin bristlecone pines (Pinus longaeva Bailey) from three groves in the White Mountains, California, USA. The White Mountains are the most westerly extension of bristlecone pine and home to the oldest known living trees. We assayed two forks of each tree to determine whether they originated from multiple seed caches of the Clark's nutcracker.
View Article and Find Full Text PDFWeeping piñon (Pinus pinceana) has a restricted and fragmented range, trees are widely scattered within populations, and reproduction is limited. Nevertheless, genetic diversity was high; based on 27 isozyme loci in 18 enzyme systems, unbiased expected heterozygosity averaged 0.174.
View Article and Find Full Text PDFMean expected heterozygosity at 33 isozyme loci decreased with latitude from 0.193 near the southern extreme of Coulter pine's range to 0.107 at its northern extreme.
View Article and Find Full Text PDFMaxipiñon (Pinus maximartinezii Rzedowski), which is confined to a single population of approximately 2000 to 2500 mature trees, covers about 400 ha in southern Zacatecas, Mexico. Genetic diversity measured by expected heterozygosity was 0.122, which is moderate for pines.
View Article and Find Full Text PDFFragmentation and reduction in population size are expected to reduce genetic diversity. However, examples from natural populations of forest trees are scarce. The range of Chihuahua spruce retreated northward and fragmented coincident with the warming climate that marked the early Holocene.
View Article and Find Full Text PDFPositive correlations between measures of "fitness" and the number of electrophoretic loci for which an individual is heterozygous have been observed in many species. Two major hypotheses have been proposed to explain this phenomenon: inbreeding depression and overdominance. Until recently, there has been no way to distinguish between these hypotheses.
View Article and Find Full Text PDF