Publications by authors named "Leda Bassit"

Chronic hepatitis B (CHB) represents a significant unmet medical need with few options beyond lifelong treatment with nucleoside analogues, which rarely leads to a functional cure. Novel agents that reduce levels of HBV DNA, RNA and other viral antigens could lead to better treatment outcomes. The capsid assembly modulator (CAM) class of compounds represents an important modality for chronic suppression and to improve functional cure rates, either alone or in combination.

View Article and Find Full Text PDF

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Alpha variant in 2020 demonstrated the need for reanalysis of diagnostic tests to ensure detection of emerging variants. Here, we present a protocol for creating and characterizing SARS-CoV-2 variant testing panels using remnant clinical samples for diagnostic assay testing. We describe steps for characterizing SARS-CoV-2 remnant clinical samples and preparing them into pools and their use in preparing varying quantities of virus.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatitis B virus (HBV) is a major cause of chronic liver diseases, and targeting its nucleocapsid assembly offers a potential strategy for antiviral drug development.
  • Researchers have discovered new capsid assembly modulators (CAMs) that show moderate effectiveness and low toxicity, using advanced techniques like molecular docking and simulations.
  • The identified compounds impeded HBV DNA replication and formed abnormal capsids, highlighting their potential for further development and optimization in treating HBV.
View Article and Find Full Text PDF

Anorectal and oropharyngeal exposures are implicated in sexual transmission of mpox, but authorized assays in the United States are only validated with cutaneous lesion swabs. Diagnostic assays for anorectal and oropharyngeal swabs are needed to address potential future outbreaks. The Cepheid Xpert® Mpox is the first point-of-care assay to receive FDA emergency use authorization in the United States and would be a valuable tool for evaluating these sample types.

View Article and Find Full Text PDF

The 2022 mpox outbreak primarily involved sexual transmission among men who have sex with men and disproportionately affected persons with human immunodeficiency virus (HIV). We examined viral dynamics and clinical features in a cohort evaluated for mpox infection at a comprehensive HIV clinic in Atlanta, Georgia. Viral DNA was found in 8 oropharyngeal and 5 anorectal specimens among 10 mpox cases confirmed by lesion swab polymerase chain reaction.

View Article and Find Full Text PDF

Motivation: The motivation for this work was the need to establish a predefined cutoff based on genome copies per ml (GE/ml) rather than Ct, which can vary depending on the laboratory and assay used. A GE/ml-based threshold was necessary to define what constituted 'low positives" for samples that were included in data sets submitted to the FDA for emergency use approval for SARS-CoV-2 antigen tests.

Summary: SARS-CoV-2, the causal agent of the global COVID-19 pandemic, made its appearance at the end of 2019 and is still circulating in the population.

View Article and Find Full Text PDF

Chronic hepatitis B virus (HBV) infection remains a major global health burden. It affects more than 290 million individuals worldwide and is responsible for approximately 900,000 deaths annually. Anti-HBV treatment with a nucleoside analog in combination with pegylated interferon are considered first-line therapy for patients with chronic HBV infection and liver inflammation.

View Article and Find Full Text PDF

Rapid antigen tests (RATs) have become an invaluable tool for combating the COVID-19 pandemic. However, concerns have been raised regarding the ability of existing RATs to effectively detect emerging SARS-CoV-2 variants. We compared the performance of 10 commercially available, emergency use authorized RATs against the Delta and Omicron SARS-CoV-2 variants using both individual patient and serially diluted pooled clinical samples.

View Article and Find Full Text PDF

Introduction: Swab pooling may allow for more efficient use of point-of-care assays for SARS-CoV-2 detection in settings where widespread testing is warranted, but the effects of pooling on assay performance are not well described.

Methods: We tested the Thermo-Fisher Accula rapid point-of-care RT-PCR platform with contrived pooled nasal swab specimens.

Results: We observed a higher limit of detection of 3,750 copies/swab in pooled specimens compared to 2,250 copies/swab in individual specimens.

View Article and Find Full Text PDF

Introduction: The burden of chronic hepatitis B virus (HBV) results in almost a million deaths per year. The most common treatment for chronic hepatitis B infection is long-term nucleoside analogs (NUC) or one-year interferon-alpha (pegylated or non-pegylated) therapy before or after NUC therapy. Unfortunately, these therapies rarely result in HBV functional cure because they do not eradicate HBV from the nucleus of the hepatocytes, where the covalently closed circular DNA (cccDNA) is formed and/or where the integrated HBV DNA persists in the host genome.

View Article and Find Full Text PDF

Widespread use of over-the-counter rapid diagnostic tests for SARS-CoV-2 has led to a decrease in availability of clinical samples for viral genomic surveillance. As an alternative sample source, we evaluated RNA isolated from BinaxNOW swabs stored at ambient temperature for SARS-CoV-2 rRT-PCR and full viral genome sequencing. 81 of 103 samples (78.

View Article and Find Full Text PDF

Rapid Antigen Tests (RAT) have become an invaluable tool for combating the COVID-19 pandemic. However, concerns have been raised regarding the ability of existing RATs to effectively detect emerging SARS-CoV-2 variants. We compared the performance of eight commercially available, emergency use authorized RATs against the Delta and Omicron SARS-CoV-2 variants using individual patient and serially diluted pooled clinical samples.

View Article and Find Full Text PDF

The effects of mutations in continuously emerging variants of SARS-CoV-2 are a major concern for the performance of rapid antigen tests. To evaluate the impact of mutations on 17 antibodies used in 11 commercially available antigen tests with emergency use authorization, we measured antibody binding for all possible Nucleocapsid point mutations using a mammalian surface-display platform and deep mutational scanning. The results provide a complete map of the antibodies' epitopes and their susceptibility to mutational escape.

View Article and Find Full Text PDF

Viral resistance is a worldwide problem mitigating the effectiveness of antiviral drugs. Mutations in the drug-targeting proteins are the primary mechanism for the emergence of drug resistance. It is essential to identify the drug resistance mutations to elucidate the mechanism of resistance and to suggest promising treatment strategies to counter the drug resistance.

View Article and Find Full Text PDF

Background: The continued emergence of SARS-CoV-2 variants has caused concern that a constantly evolving virus will escape vaccines and antibody therapies. New approaches are needed.

Methods: We created and manufactured an ACE2 extracellular domain (ECD) fragment Fc fusion drug candidate, G921, and engineered the compound for enhanced delivery of drug to peripheral tissues by minimizing the size of the ACE2 ECD and by incorporating an Fc domain to enhance transcytosis.

View Article and Find Full Text PDF

Nucleoside analogs are the backbone of antiviral therapies. Drugs from this class undergo processing by host or viral kinases to form the active nucleoside triphosphate species that selectively inhibits the viral polymerase. It is the central hypothesis that the nucleoside triphosphate analog must be a favorable substrate for the viral polymerase and the nucleoside precursor must be a satisfactory substrate for the host kinases to inhibit viral replication.

View Article and Find Full Text PDF

Interfering with the self-assembly of virus nucleocapsids is a promising approach for the development of novel antiviral agents. Applied to hepatitis B virus (HBV), this approach has led to several classes of capsid assembly modulators (CAMs) that target the virus by either accelerating nucleocapsid assembly or misdirecting it into noncapsid-like particles, thereby inhibiting the HBV replication cycle. Here, we have assessed the structures of early nucleocapsid assembly intermediates, bound with and without CAMs, using molecular dynamics simulations.

View Article and Find Full Text PDF

Monitoring the genetic diversity and emerging mutations of SARS-CoV-2 is crucial for understanding the evolution of the virus and assuring the performance of diagnostic tests, vaccines, and therapies against COVID-19. SARS-CoV-2 is still adapting to humans and, as illustrated by B.1.

View Article and Find Full Text PDF

As the emergence of SARS-CoV-2 variants brings the global pandemic to new levels, the performance of current rapid antigen tests against variants of concern and interest (VOC/I) is of significant public health concern. Here, we report assessment of the Abbot BinaxNOW COVID-19 Antigen Self-Test. Using genetically sequenced remnant clinical samples collected from individuals positive for SARS-CoV-2, we assessed the performance of BinaxNOW against the variants that currently pose public health threats.

View Article and Find Full Text PDF

Due to the severity of COVID-19 disease, the U.S. Centers for Disease Control and Prevention and World Health Organization recommend that manipulation of active viral cultures of SARS-CoV-2 and respiratory secretions from COVID-19 patients be performed in biosafety level (BSL)3 laboratories.

View Article and Find Full Text PDF

Background: Upper respiratory samples for SARS-CoV-2 detection include the gold standard nasopharyngeal (NP) swab, and mid-turbinate (MT) nasal swabs, oropharyngeal (OP) swabs, and saliva. Following the emergence of the omicron (B.1.

View Article and Find Full Text PDF

The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi-Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication.

View Article and Find Full Text PDF

Remdesivir, a monophosphate prodrug of nucleoside analog GS-441524, is widely used for the treatment of moderate to severe COVID-19. It has been suggested to use GS-441524 instead of remdesivir in the clinic and in new inhalation formulations. Thus, we compared the anti-SARS-CoV-2 activity of remdesivir and GS-441524 in Vero E6, Vero CCL-81, Calu-3, Caco-2 ​cells, and anti-HCoV-OC43 activity in Huh-7 ​cells.

View Article and Find Full Text PDF