Publications by authors named "Lecoutre C"

Granular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters.

View Article and Find Full Text PDF

A new experimental facility has been designed and constructed to study driven granular media in a low-gravity environment. This versatile instrument, fully automatized, with a modular design based on several interchangeable experimental cells, allows us to investigate research topics ranging from dilute to dense regimes of granular media such as granular gas, segregation, convection, sound propagation, jamming, and rheology-all without the disturbance by gravitational stresses active on Earth. Here, we present the main parameters, protocols, and performance characteristics of the instrument.

View Article and Find Full Text PDF

In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally expected to deviate from a rectilinear law approaching the critical point. However, by performing precise scannerlike optical measurements of the position of the SF_{6} liquid-vapor meniscus, in an approach much closer to criticality in temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The observed meniscus position from far (10K) to extremely close (1mK) to the critical temperature is analyzed using recent theoretical models to predict the complete scaling consequences of a fluid asymmetry.

View Article and Find Full Text PDF

Phase transition is a ubiquitous phenomenon in nature, science and technology. In general, the phase separation from a homogeneous phase depends on the depth of the temperature quench into the two-phase region. Earth's gravity masks the details of phase separation phenomena, which is why experiments were performed under weightlessness.

View Article and Find Full Text PDF

Phase transition in fluids is ubiquitous in nature and has important applications in areas such as the food industry for volatile oils' extraction or in nuclear plants for heat transfer. Fundamentals are hampered by gravity effects on Earth. We used direct imaging to record snapshots of phase separation that takes place in sulfur hexafluoride, SF₆, under weightlessness conditions on the International Space Station (ISS).

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how periodical patterns form at the interface of two non-mixing fluids when subjected to vibrations in zero-gravity conditions.
  • The fluids are near their liquid-vapor critical point, showing universal behavior with similar densities and very low surface tension.
  • Findings indicate that the instability mechanisms differ in zero gravity, emphasizing the importance of viscosity and how the pattern wavelength varies with vibration parameters.
View Article and Find Full Text PDF

In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics.

View Article and Find Full Text PDF

Near the critical point of fluids, critical opalescence results in light attenuation, or turbidity increase, that can be used to probe the universality of critical behavior. Turbidity measurements in SF6 under weightlessness conditions on board the International Space Station are performed to appraise such behavior in terms of both temperature and density distances from the critical point. Data are obtained in a temperature range, far (1 K) from and extremely close (a few μK) to the phase transition, unattainable from previous experiments on Earth.

View Article and Find Full Text PDF

A successful implementation of in situ X-ray scattering analysis of synthetized particle materials in silicon/glass microreactors is reported. Calcium carbonate (CaCO3) as a model material was precipitated inside the microchannels through the counter-injection of two aqueous solutions, containing carbonate ions and calcium ions, respectively. The synthesized calcite particles were analyzed in situ in aqueous media by combining Small Angle X-ray Scattering (SAXS) and Wide Angle X-ray Scattering (WAXS) techniques at the ESRF ID02 beam line.

View Article and Find Full Text PDF

We used a direct imaging technique to investigate concentration fluctuations enhanced by thermal fluctuations in a ternary mixture of methanol (Me), cyclohexane (C), and partially deuterated cyclohexane (C*) within 1mK above its consolute critical point. The experimental setup used a low-coherence white-light source and a red filter to visualize fluctuation images. The red-filtered images were analyzed off-line using a differential dynamic microscopy algorithm that allowed us to determine the correlation time, τ, of concentration fluctuations.

View Article and Find Full Text PDF

Near the liquid-vapor critical point in pure fluids, material and thermal properties vary considerably with temperature. In a series of microgravity experiments, sulfur hexafluoride (SF6) was heated ∼1 K above its critical temperature, then quenched below the critical temperature in order to form gas and liquid domains. We found a power law exponent of 0.

View Article and Find Full Text PDF

By introducing three well-defined dimensionless numbers, we establish the link between the scale dilatation method able to estimate master (i.e., unique) singular behaviors of the one-component fluid subclass and the universal crossover functions recently estimated [Garrabos and Bervillier, Phys.

View Article and Find Full Text PDF

The master asymptotic behavior of the usual parachor correlations, expressing surface tension sigma as a power law of the density difference rho(L)-rho(V) between coexisting liquid and vapor, is analyzed for a series of pure compounds close to their liquid-vapor critical point, using only four critical parameters (beta(c))-1 , alpha(c) , Z(c) , and Y(c) , for each fluid. This is accomplished by the scale dilatation method of the fluid variables where, in addition to the energy unit (beta(c))-1 and the length unit alpha(c) , the dimensionless numbers Z(c) and Y(c) are the characteristic scale factors of the ordering field along the critical isotherm and of the temperature field along the critical isochore, respectively. The scale dilatation method is then formally analogous to the basic system-dependent formulation of the renormalization theory.

View Article and Find Full Text PDF

We present the master (i.e., unique) behavior of the squared capillary length-the so-called Sugden factor-as a function of the temperaturelike field along the critical isochore, asymptotically close to the gas-liquid critical point of about twenty (one-component) fluids.

View Article and Find Full Text PDF

The effect of a linear harmonic vibration on heat propagation is investigated in near-critical SF6 under weightlessness conditions in space. Heat was issued from a pointlike source (thermistor), a situation representative of an industrial use of pressurized supercritical fluid storage. Two kinds of vibrations were used, large amplitude (64 mm) at 0.

View Article and Find Full Text PDF

We present the master (i.e., unique) behavior of the correlation length, as a function of the thermal field along the critical isochore, asymptotically close to the gas-liquid critical point of xenon, krypton, argon, helium-3, sulfur hexafluoride, carbon dioxide, and heavy water.

View Article and Find Full Text PDF

Surgical exeresis and radiation therapy are effective means of treatment for facial carcinomas. In some areas that are difficult to manage (nose, ears, periorbital region), the respective importance of both approaches is discussed. We report on the retrospective study of 309 patients seen after a skin carcinology consultation in which a dermatologist, a surgeon and a radiotherapist were associated.

View Article and Find Full Text PDF