Publications by authors named "Lecourt S"

Article Synopsis
  • Hematopoietic multipotent progenitors (MPPs) in the bone marrow can differentiate into various cell types, influenced by both intrinsic and extrinsic signals, with WHIM syndrome patients exhibiting an excess of myeloid cells due to CXCR4 signaling mutations.
  • Research using knock-in mice with WHIM-associated mutations showed that MPP4 cells, which usually develop into lymphoid cells, instead skewed towards myeloid differentiation due to increased mTOR signaling and altered oxidative phosphorylation.
  • Treatment with CXCR4 antagonist AMD3100 or mTOR inhibitor rapamycin reversed this myeloid bias, indicating that normal CXCR4 function is crucial for maintaining the lymphoid potential of MPP4 cells by regulating
View Article and Find Full Text PDF

Recent advancements in shRNA and Cas protein technologies have enabled functional screening methods targeting genes or non-coding regions using single or pooled shRNA and sgRNA. CRISPR-based systems have also been developed for modulating DNA accessibility, resulting in CRISPR-mediated interference (CRISPRi) or activation (CRISPRa) of targeted genes or genomic DNA elements. However, there is still a lack of software tools for integrating diverse array of functional genomics screening outputs that could offer a cohesive framework for comprehensive data integration.

View Article and Find Full Text PDF

Super Enhancers (SEs) are clusters of regulatory elements associated with cell identity and disease. However, whether these elements are induced by oncogenes and can regulate gene modules cooperating for cancer cell transformation or maintenance remains elusive. To address this question, we conducted a genome-wide CRISPRi-based screening of SEs in ETO2-GLIS2 acute megakaryoblastic leukemia.

View Article and Find Full Text PDF

Objective: The study's aim was to analyze the capacity of human valve interstitial cells (VICs) to participate in aortic valve angiogenesis. Approach and Results: VICs were isolated from human aortic valves obtained after surgery for calcific aortic valve disease and from normal aortic valves unsuitable for grafting (control VICs). We examined VIC in vitro and in vivo potential to differentiate in endothelial and perivascular lineages.

View Article and Find Full Text PDF

Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor is a widely used anticonvulsant drug. VPA is also under clinical evaluation to be employed in anticancer therapy, as an antithrombotic agent or a molecule to be used in the stem cells expansion protocols. Since endothelial colony forming cells (ECFC) has been identified as the human postnatal vasculogenic cells involved in thrombotic disorders and serve as a promising source of immature cell for vascular repair, objectives of the present study were to determine how VPA contributes to ECFC commitment and their angiogenic properties.

View Article and Find Full Text PDF

Introduction: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by obliteration of alveolar architecture, resulting in declining lung function and ultimately death. Pathogenic mechanisms involve a concomitant accumulation of scar tissue together with myofibroblasts activation and a strong abnormal vascular remodeling. Endothelial progenitor cells (ECFC subtype) have been investigated in several human lung diseases as a potential actor in IPF.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by obliteration of alveolar architecture, resulting in declining lung function and ultimately death. Pathogenic mechanisms remain unclear but involve a concomitant accumulation of scar tissue together with myofibroblasts activation. Microparticles (MPs) have been investigated in several human lung diseases as possible pathogenic elements, prognosis markers and therapeutic targets.

View Article and Find Full Text PDF

Egfl7 (VE-statin) is a secreted protein mostly specific to the endothelial lineage during development and in the adult and which expression is enhanced during angiogenesis. Egfl7 involvement in human postnatal vasculogenesis remains unresolved yet. Our aim was to assess Egfl7 expression in several angiogenic cell types originating from human bone marrow, peripheral blood, or cord blood.

View Article and Find Full Text PDF

Melanoma is a particularly virulent human cancer, due to its resistance to conventional treatments and high frequency of metastasis. Melanomas contain a fraction of cells, the melanoma-initiating cells (MICs), responsible for tumor propagation and relapse. Identification of the molecular pathways supporting MICs is, therefore, vital for the development of targeted treatments.

View Article and Find Full Text PDF

In solid organ transplant, immunosuppressive therapy helped to increase graft and patient survival. However, these treatments are associated with toxic risks and infectious or tumor complications. The identification of immunoregulatory properties of regulatory cells and in particular Mesenchymal Stem Cells opens new therapeutic perspectives in the prevention of acute rejection and for the treatment of chronic rejection.

View Article and Find Full Text PDF

Biased DNA segregation is a mitotic event in which the chromatids carrying the original template DNA strands and those carrying the template copies are not segregated randomly into the two daughter cells. Biased segregation has been observed in several cell types, but not in human mesenchymal stem cells (hMSCs), and the factors affecting this bias have yet to be identified. Here, we have investigated cell adhesion geometries as a potential parameter by plating hMSCs from healthy donors on fibronectin-coated micropatterns.

View Article and Find Full Text PDF

Gaucher disease (GD) is an autosomal recessive disorder characterized by lysosomal glucocerebrosidase (GBA) deficiency leading to hematological and skeletal manifestations. Mechanisms underlying these symptoms have not yet been elucidated. In vivo, bone marrow (BM) mesenchymal stem cells (MSCs) have important role in the regulation of bone mass and in the support of hematopoiesis, thus representing potential candidate that could contribute to the disease.

View Article and Find Full Text PDF

Circulating endothelial progenitor cells (cEPC) are capable of homing to neovascularisation sites, in which they proliferate and differentiate into endothelial cells. Transplantation of cEPC-derived cells, in particular those isolated from umbilical cord blood (UCB), has emerged as a promising approach in the treatment of cardio-vascular diseases. After in vivo transplantation, these cells may be exposed to local or systemic inflammation or pathogens, of which they are a common target.

View Article and Find Full Text PDF

Introduction: Tissue engineering represents a promising approach for esophageal replacement, considering the complexity and drawbacks of conventional techniques.

Aim: To create the components necessary to reconstruct in vitro or in vivo an esophageal wall, we analyzed the feasibility and the optimal conditions of human and pig skeletal myoblast (HSM and PSM) and porcine oral epithelial cell (OEC) culture on biologic scaffolds.

Materials And Methods: PSM and HSM were isolated from striated muscle and porcine OECs were extracted from oral mucosa biopsies.

View Article and Find Full Text PDF

Objectives: The present work aimed to evaluate the expression of transforming growth factor-β (TGF-β) receptors on bone marrow-derived multipotent mesenchymal stromal cells (MSCs) in patients with systemic sclerosis (SSc) and the consequences of TGF-β activation in these cells, since MSC have potential therapeutic interest for SSc patients and knowing that TGF-β plays a critical role during the development of fibrosis in SSc.

Design: This is a prospective research study using MSC samples obtained from SSc patients and compared with MSC from healthy donors.

Setting: One medical hospital involving collaboration between an internal medicine department for initial patient recruitment, a clinical biotherapeutic unit for MSC preparation and an academic laboratory for research.

View Article and Find Full Text PDF

In human skeletal muscle, myoblasts represent the main population of myogenic progenitors. We previously showed that, beside their myogenic differentiation capacities, myoblasts also differentiate towards osteogenic and chondrogenic lineages, some properties generally considered being hallmarks of mesenchymal stem cells (MSCs). MSCs are also characterized by their immunosuppressive potential, through cell-cell contacts and soluble factors, including prostaglandin E-2 (PGE-2), transforming growth factor-β1 (TGF-β1), interleukine-10, or indoleamine 2,3-dioxygenase.

View Article and Find Full Text PDF

Gaucher disease (GD) is a lysosomal storage disorder due to glucocerebrosidase (GBA) deficiency. Mechanisms leading to the emergence of hematological and skeletal manifestations observed in GD are poorly explained. Bone marrow (BM) mesenchymal stem cells (MSCs) are multipotent progenitors that participate in the regulation of bone mass.

View Article and Find Full Text PDF

This essay uses Walter Pater's "Marius the Epicurean" (1885) to explore why certain Victorian liberals preferred to see religion as a matter of collective inheritance rather than personal belief. Recent commentators have portrayed the Protestant emphasis on individual conversion as one of the foundations of liberal individualism. Pater's liberalism, however, sees radical breakage with the past as a threat to the humanist ideal of many-sidedness and instead imagines the path of a rich individuality as running precisely through a surrender to the inscriptions of cultural heritage.

View Article and Find Full Text PDF

One of the cardinal symptoms of type 1 Gaucher Disease (GD) is cytopenia, usually explained by bone marrow (BM) infiltration by Gaucher cells and hypersplenism. However, some cases of cytopenia in splenectomized or treated patients suggest possible other mechanisms. To evaluate intra-cellular glucocerebrosidase (GlcC) activity in immature progenitors and to prove the conduritol B epoxide (CBE)-induced inhibition of the enzyme, we used an adapted flow cytometric technique before assessing the direct effect of GlcC deficiency in functional assays.

View Article and Find Full Text PDF

Umbilical cord blood (CB) represents a main source of circulating endothelial progenitor cells (cEPCs). In view of their clinical use, in either the autologous or allogeneic setting, cEPCs should likely be expanded from CB kept frozen in CB banks. In this study, we compared the expansion, functional features, senescence pattern over culture, and in vivo angiogenic potential of cEPCs isolated from fresh or cryopreserved CB (cryoCB).

View Article and Find Full Text PDF

Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages.

View Article and Find Full Text PDF

A major issue in congenital heart surgery is the lack of viable right ventricular outflow tract (RVOT) replacement materials. Several biomaterials have been used, with different scaffolds and cells, but they have failed to restore a tri-layered RVOT, and reoperations are often required. We investigated the function, histological changes and potential of growth and tissue regeneration of polydioxanone (PDO) electrospun bioabsorbable valved patches seeded with mesenchymal stem cells (MSCs) in the RVOT of growing lambs.

View Article and Find Full Text PDF

Background: Esophageal replacement is a challenging problem requiring complex reconstruction. In response to the recent success of tracheal replacement by fresh allogenic aorta in humans, we assessed in a pig model the feasibility of circumferential segmental esophageal replacement by a fresh aortic allograft.

Methods: A 4-cm long aortic allograft was interposed after a circumferential 2-cm long resection of the cervical esophagus in 18 minipigs.

View Article and Find Full Text PDF

In human physiology and animal models, bone marrow mesenchymal stem cells (MSCs) exert an immunosuppressive role in both in vitro and in vivo experiments. However, cellular and molecular mechanisms involved in this process are not clear and remain largely elusive. Several studies have suggested the implication of cell-cell contacts or soluble factors including transforming growth factor-b1 (TGF-b1), interleukin-10 (IL-10), indoleamine 2,3-dioxygenase (IDO), or human leukocyte antigen-G (HLA-G).

View Article and Find Full Text PDF

Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM), umbilical cord blood (UCB), and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study, we have identified ALDH(+) cells within human skeletal muscles, and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells.

View Article and Find Full Text PDF