Publications by authors named "Leclercq G"

CD70 is an attractive target for chimeric antigen receptor (CAR) T-cell therapy for the treatment of both solid and liquid malignancies. However, the functionality of CD70-specific CAR T cells is modest. We optimized a CD70-specific VHH-based CAR (nanoCAR).

View Article and Find Full Text PDF

Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear.

View Article and Find Full Text PDF

Introduction: Forearm compartment syndrome (CS) in children is above all a clinical diagnosis whose main cause is traumatic. However, rarer causes such as infection can alter its clinical presentation.

Clinical Case: An 8-year-old boy has been seen in the emergency department complaining of severe forearm pain under a splint in a mild traumatic context.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients.

View Article and Find Full Text PDF
Article Synopsis
  • Acute thymic atrophy occurs after type 1 inflammatory conditions like viral infections and sepsis, leading to cell death and affecting T cell development.
  • Single-cell RNA sequencing identifies neonatal thymic-resident ILC1s as a distinct and immature group compared to those in other lymphoid organs, and exposure to certain cytokines (IL-12 and IL-18) promotes their rapid growth and migration.
  • Type 1 inflammation not only causes thymic atrophy but also enhances the movement of these ILC1s to other areas like the liver and peritoneal cavity, indicating a potential role in immune responses.
View Article and Find Full Text PDF

BACKGROUND The Cook® Airway ExchangeCatheter (Cook® AEC, Cook Group Incorporated, Bloomington, Indiana, USA) is an 83-cm-long graduated hollow tube with an external diameter of 11, 14, or 19 French, commonly used for tracheal tube replacement. Although this application is reliable in the exchange of single-lumen tubes, the failure rate markedly rises during the exchange from a single-lumen to a double-lumen endotracheal tube. It is also often used as a bridge to extubation in patients with difficult airways and for oxygenation support applications.

View Article and Find Full Text PDF

The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immune deficiency caused by a mutation in the WAS gene. This leads to altered or absent WAS protein (WASp) expression and function resulting in thrombocytopenia, eczema, recurrent infections, and autoimmunity. In T cells, WASp is required for immune synapse formation.

View Article and Find Full Text PDF

In the human thymus, a CD10+ PD-1+ TCRαβ+ differentiation pathway diverges from the conventional single positive T cell lineages at the early double-positive stage. Here, we identify the progeny of this unconventional lineage in antigen-inexperienced blood. These unconventional T cells (UTCs) in thymus and blood share a transcriptomic profile, characterized by hallmark transcription factors (i.

View Article and Find Full Text PDF

The cross-talk between thymocytes and thymic stromal cells is fundamental for T cell development. In humans, intrathymic development of dendritic cells (DCs) is evident but its physiological significance is unknown. Here we showed that DC-biased precursors depended on the expression of the transcription factor IRF8 to express the membrane-bound precursor form of the cytokine TNF (tmTNF) to promote differentiation of thymus seeding hematopoietic progenitors into T-lineage specified precursors through activation of the TNF receptor (TNFR)-2 instead of TNFR1.

View Article and Find Full Text PDF

Natural killer (NK) cells are cytotoxic and cytokine-producing lymphocytes that play an important role in the first line of defense against malignant or virus-infected cells. A better understanding of the transcriptional regulation of human NK cell differentiation is crucial to improve the efficacy of NK cell-mediated immunotherapy for cancer treatment. Here, we studied the role of the transcription factor interferon regulatory factor (IRF) 2 in human NK cell differentiation by stable knockdown or overexpression in cord blood hematopoietic stem cells and investigated its effect on development and function of the NK cell progeny.

View Article and Find Full Text PDF

Type 3 innate lymphoid cells (ILC3s) are characterized by RORγt expression and they produce IL-22 upon activation. ILC3s play a role in maintenance of barrier integrity in the intestine. Under inflammatory conditions, the ILC composition of the mucosal tissues is altered due to a high degree of plasticity.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the role and behavior of natural killer (NK) cells in COVID-19 patients, using techniques like flow cytometry and single-cell RNA sequencing, to understand how these immune cells respond during different stages and severity of the disease.* -
  • Results show that NK cells from different patient groups (like those in low-care vs. ICU) exhibit distinct activated phenotypes, with early-stage patients showing higher levels of cytotoxic molecules, while later-stage patients display increased levels of specific cytokines (IFN-γ, TNF-α) without typical stimulation.* -
  • Key findings also reveal that, although NK cells in severe patients had lower cytotoxic molecules, they still managed to kill target cells effectively, while
View Article and Find Full Text PDF

The ability of natural killer (NK) cells to kill tumor cells without prior sensitization makes them a rising player in immunotherapy. Increased understanding of the development and functioning of NK cells will improve their clinical utilization. As opposed to murine NK cell development, human NK cell development is still less understood.

View Article and Find Full Text PDF

T cells are generated from hematopoietic stem cells through a highly organized developmental process, in which stage-specific molecular events drive maturation towards αβ and γδ T cells. Although many of the mechanisms that control αβ- and γδ-lineage differentiation are shared between human and mouse, important differences have also been observed. Here, we studied the regulatory dynamics of the E and ID protein encoding genes during pediatric human T cell development by evaluating changes in chromatin accessibility, histone modifications and bulk and single cell gene expression.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate lymphocytes that eliminate virus-infected and cancer cells by cytotoxicity and cytokine secretion. In addition to circulating NK cells, distinct tissue-resident NK subsets have been identified in various organs. Although transcription factors regulating NK cell development and function have been extensively studied in mice, the role of RUNX2 in these processes has not been investigated, neither in mice nor in human.

View Article and Find Full Text PDF

T cell engaging therapies, like CAR-T cells and T cell engagers, redirect T cells toward tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing. T cell receptor or CAR-T downstream signaling triggers a release of pro-inflammatory cytokines, which can induce a Cytokine Release Syndrome (CRS). The incidence of CRS is still hardly predictable among individuals and remains one of the major dose-limiting safety liabilities associated with on-target activity of T cell engaging therapies.

View Article and Find Full Text PDF

T cell engagers represent a novel promising class of cancer-immunotherapies redirecting T cells to tumor cells and have some promising outcomes in the clinic. These molecules can be associated with a mode-of-action related risk of cytokine release syndrome (CRS) in patients. CRS is characterized by the rapid release of pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-6 and IL-1β and immune cell activation eliciting clinical symptoms of fever, hypoxia and hypotension.

View Article and Find Full Text PDF

Background: T cell engaging therapies, like chimeric antigen receptor T cells and T cell bispecific antibodies (TCBs), efficiently redirect T cells towards tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing, a process that is accompanied by the release of cytokines. Despite their promising efficacy in the clinic, treatment with TCBs is associated with a risk of cytokine release syndrome (CRS). The aim of this study was to identify small molecules able to mitigate cytokine release while retaining T cell-mediated tumor killing.

View Article and Find Full Text PDF

Messenger RNA (mRNA) has become a promising tool in therapeutic cancer vaccine strategies. Owing to its flexible design and rapid production, mRNA is an attractive antigen delivery format for cancer vaccines targeting mutated peptides expressed in a tumor-the so-called neoantigens. These neoantigens are rarely shared between patients, and inclusion of these antigens in a vaccine requires the production of individual batches of patient-tailored mRNA.

View Article and Find Full Text PDF

T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary.

View Article and Find Full Text PDF

T cell receptor (TCR)-redirected T cells target intracellular antigens such as Wilms' tumor 1 (WT1), a tumor-associated antigen overexpressed in several malignancies, including acute myeloid leukemia (AML). For both chimeric antigen receptor (CAR)- and TCR-redirected T cells, several clinical studies indicate that T cell subsets with a less-differentiated phenotype (e.g.

View Article and Find Full Text PDF

Background: T cell engagers are bispecific antibodies recognizing, with one moiety, the CD3ε chain of the T cell receptor and, with the other moiety, specific tumor surface antigens. Crosslinking of CD3 upon simultaneous binding to tumor antigens triggers T cell activation, proliferation and cytokine release, leading to tumor cell killing. Treatment with T cell engagers can be associated with safety liabilities due to on-target on-tumor, on-target off-tumor cytotoxic activity and cytokine release syndrome (CRS).

View Article and Find Full Text PDF

Severe Combined Immune Deficiency (SCID) is a primary deficiency of the immune system in which opportunistic and recurring infections are often fatal during neonatal or infant life. SCID is caused by an increasing number of genetic defects that induce an abrogation of T lymphocyte development or function in which B and NK cells might be affected as well. Because of the increased availability and usage of next-generation sequencing (NGS), many novel variants in SCID genes are being identified and cause a heterogeneous disease spectrum.

View Article and Find Full Text PDF