Publications by authors named "Lechman J"

The high-pressure compaction of three dimensional granular packings is simulated using a bonded particle model (BPM) to capture linear elastic deformation. In the model, grains are represented by a collection of point particles connected by bonds. A simple multibody interaction is introduced to control Poisson's ratio and the arrangement of particles on the surface of a grain is varied to model both high- and low-frictional grains.

View Article and Find Full Text PDF

Static structure factors are computed for large-scale, mechanically stable, jammed packings of frictionless spheres (three dimensions) and disks (two dimensions) with broad, power-law size dispersity characterized by the exponent -β. The static structure factor exhibits diverging power-law behavior for small wave numbers, allowing us to identify a structural fractal dimension d_{f}. In three dimensions, d_{f}≈2.

View Article and Find Full Text PDF

Due to significant computational expense, discrete element method simulations of jammed packings of size-dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the correspondence between simulations and real-world granular materials with large size dispersity. Invoking a recently developed neighbor binning algorithm, we generate mechanically stable jammed packings of frictionless spheres with power-law size distributions containing up to nearly 4 000 000 particles with size ratios up to 1:100. By systematically varying the width and exponent of the underlying power laws, we analyze the role of particle size distributions on the structure of jammed packings.

View Article and Find Full Text PDF

Despite there being an infinite variety of types of flow, most rheological studies focus on a single type such as simple shear. Using discrete element simulations, we explore bulk granular systems in a wide range of flow types at large strains and characterize invariants of the stress tensor for different inertial numbers and interparticle friction coefficients. We identify a strong dependence on the type of flow, which grows with increasing inertial number or friction.

View Article and Find Full Text PDF

Flowing granular materials often abruptly arrest if not driven by sufficient applied stresses. Such abrupt cessation of motion can be economically expensive in industrial materials handling and processing, and is significantly consequential in intermittent geophysical phenomena such as landslides and earthquakes. Using discrete element simulations, we calculate states of steady flow and arrest for granular materials under the conditions of constant applied pressure and shear stress, which are also most relevant in practice.

View Article and Find Full Text PDF

Intuition tells us that a rolling or spinning sphere will eventually stop due to the presence of friction and other dissipative interactions. The resistance to rolling and spinning or twisting torque that stops a sphere also changes the microstructure of a granular packing of frictional spheres by increasing the number of constraints on the degrees of freedom of motion. We perform discrete element modeling simulations to construct sphere packings implementing a range of frictional constraints under a pressure-controlled protocol.

View Article and Find Full Text PDF

Blood flowing through microvascular bifurcations has been an active research topic for many decades, while the partitioning pattern of nanoscale solutes in the blood remains relatively unexplored. Here we demonstrate a multiscale computational framework for direct numerical simulation of the nanoparticle (NP) partitioning through physiologically relevant vascular bifurcations in the presence of red blood cells (RBCs). The computational framework is established by embedding a particulate suspension inflow-outflow boundary condition into a multiscale blood flow solver.

View Article and Find Full Text PDF

The complex three-phase composition of lithium-ion battery electrodes, containing an ion-conducting pore phase, a nanoporous electron-conducting carbon binder domain (CBD) phase, and an active material (AM) phase, provides several avenues of mesostructural engineering to enhance battery performance. We demonstrate a promising strategy for engineering electrode mesostructures by controlling the strength of adhesion between the AM and CBD phases. Using high-fidelity, physics-based colloidal and granular dynamics simulations, we predict that this strategy can provide significant control over electrochemical transport-relevant properties such as ionic conductivity, electronic conductivity, and available AM-electrolyte interface area.

View Article and Find Full Text PDF

Using random walk analyses we explore diffusive transport on networks obtained from contacts between isotropically compressed, monodisperse, frictionless sphere packings generated over a range of pressures in the vicinity of the jamming transition p→0. For conductive particles in an insulating medium, conduction is determined by the particle contact network with nodes representing particle centers and edges contacts between particles. The transition rate is not homogeneous, but is distributed inhomogeneously due to the randomness of packing and concomitant disorder of the contact network, e.

View Article and Find Full Text PDF

The transition between shear-flowing and shear-arrested states of frictional granular matter is studied using constant-stress discrete element simulations. By subjecting a dilute system of frictional grains to a constant external shear stress and pressure, friction-dependent critical shear stress and density are clearly identified with both exhibiting a crossover between low and high friction. The critical shear stress bifurcates two nonequilibrium steady states: (i) steady state shear flow characterized by a constant deformation rate, and (ii) shear arrest characterized by temporally decaying creep to a statically stable state.

View Article and Find Full Text PDF

Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions ϕ in the vicinity of the jamming transition at ϕ(c). Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed.

View Article and Find Full Text PDF

Nanoparticles, with sizes ranging between 1 and ∼102 nm, show dynamical properties distinctly different than those of bulk materials. Due to their large surface area to volume ratio, their properties often depend on length scales. We investigate the size and the collision velocity (vcoll) dependence of the coefficient of restitution (COR) for nanoparticles made of a face-centered cubic lattice of Lennard-Jones atoms via nonequilibrium molecular dynamics simulations.

View Article and Find Full Text PDF

Multiparticle collision dynamics (MPCD) is a particle-based fluid simulation technique that is becoming increasingly popular for mesoscale fluid modeling. However, some confusion and conflicting results persist in literature regarding several important methodological details, in particular the enforcement of the no-slip condition and thermostatting in forced flow. These issues persist in simple flows past stationary boundaries, which we exclusively focus on here.

View Article and Find Full Text PDF

Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface.

View Article and Find Full Text PDF

Stochastic rotation dynamics (SRD) is a relatively recent technique, closely related to lattice Boltzmann, for capturing hydrodynamic fluid flow at the mesoscale. The SRD method is based on simple constituent fluid particle interactions and dynamics. Here we parametrize the SRD fluid to provide a one to one match in the shear viscosity of a Lennard-Jones fluid and present viscosity measurements for a range of such parameters.

View Article and Find Full Text PDF

We present molecular dynamics simulations of the liquid-vapor phase coexistence of pure nanoparticle systems with three different model nanoparticle interactions. Our simulations show that the form of the interaction potential between nanoparticles strongly influences their coexistence behavior. For nanoparticles interacting with an integrated Lennard-Jones potential, the critical temperature and critical density increase with increasing particle size.

View Article and Find Full Text PDF

We report numerical results for velocity correlations in dense, gravity-driven granular flow down an inclined plane. For the grains on the surface layer, our results are consistent with experimental measurements reported by Pouliquen. We show that the correlation structure within planes parallel to the surface persists in the bulk.

View Article and Find Full Text PDF

The evolution of granular shear flow is investigated as a function of height in a split-bottom Couette cell. Using particle tracking, magnetic-resonance imaging, and large-scale simulations, we find a transition in the nature of the shear as a characteristic height H* is exceeded. Below H* there is a central stationary core; above H* we observe the onset of additional axial shear associated with torsional failure.

View Article and Find Full Text PDF

The pupil dark response and maintenance of pupil area in darkness were compared in seven narcoleptic patients and 14 age-matched normal volunteers. Onset and degree of miosis after maximal pupil dilation in darkness were similar in the two groups, although three narcoleptic patients and no normal volunteers fell asleep during the experiment. The results of this study contradict earlier suggestions that pupillography can be used to distinguish normal individuals in family studies of narcoleptic patients.

View Article and Find Full Text PDF