Publications by authors named "Lecheng Ruan"

Prosthetic knees represent a prevalent solution for above-knee amputation rehabilitation. However, satisfying the ambulation requirements of users while achieving their comfort needs in terms of lightweight, bionic, shock-absorbing, and user-centric, remains out of reach. Soft materials seem to provide alternative solutions as their properties are conducive to the comfort aspect.

View Article and Find Full Text PDF

This research introduces a novel, highly precise, and learning-free approach to locomotion mode prediction, a technique with potential for broad applications in the field of lower-limb wearable robotics. This study represents the pioneering effort to amalgamate 3D reconstruction and Visual-Inertial Odometry (VIO) into a locomotion mode prediction method, which yields robust prediction performance across diverse subjects and terrains, and resilience against various factors including camera view, walking direction, step size, and disturbances from moving obstacles without the need of parameter adjustments. The proposed Depth-enhanced Visual-Inertial Odometry (D-VIO) has been meticulously designed to operate within computational constraints of wearable configurations while demonstrating resilience against unpredictable human movements and sparse features.

View Article and Find Full Text PDF

Dynamic quadrupedal locomotion over rough terrains reveals remarkable progress over the last few decades. Small-scale quadruped robots are adequately flexible and adaptable to traverse uneven terrains along the sagittal direction, such as slopes and stairs. To accomplish autonomous locomotion navigation in complex environments, spinning is a fundamental yet indispensable functionality for legged robots.

View Article and Find Full Text PDF

Mimicking biological neuromuscular systems' sensory motion requires the unification of sensing and actuation in a singular artificial muscle material, which must not only actuate but also sense their own motions. These functionalities would be of great value for soft robotics that seek to achieve multifunctionality and local sensing capabilities approaching natural organisms. Here, we report a soft somatosensitive actuating material using an electrically conductive and photothermally responsive hydrogel, which combines the functions of piezoresistive strain/pressure sensing and photo/thermal actuation into a single material.

View Article and Find Full Text PDF