Am J Med Genet B Neuropsychiatr Genet
December 2024
Anorexia nervosa (AN) is a psychiatric disorder with an estimated heritability of around 70%. Although the largest meta-analysis of genome-wide association studies on AN identified independent risk-conferring loci for the disorder, the molecular mechanisms underlying the genetic basis of AN remain to be elucidated. To investigate AN, we performed transcriptome profiling in peripheral blood mononuclear cells from 15 AN patients and 15 healthy controls.
View Article and Find Full Text PDFBackground: Anorexia nervosa (AN) is a severe psychiatric disorder associated with frequent relapses and variability in treatment responses. Previous literature suggested that such variability is influenced by premorbid vulnerabilities such as abnormalities of the reward system. Several factors may indicate these vulnerabilities, such as neurocognitive markers (tendency to favour delayed reward, poor cognitive flexibility, abnormal decision process), genetic and epigenetic markers, biological and hormonal markers, and physiological markers.
View Article and Find Full Text PDFPurpose: This study aimed to provide a better understanding of the patient-perceived effects of France's first COVID-19-related lockdown on the quality of life (QoL) of women affected by cancer, and to test an ad hoc measurement scale for evaluating quasi-individualized QoL. QoL was measured for both during (i.e.
View Article and Find Full Text PDFLEAP-2 is a ghrelin antagonist with an anorexigenic drive. This study investigates the evolution of plasma ghrelin and LEAP-2 concentrations in 29 patients with anorexia nervosa (AN) before and after refeeding and compares it to physiological adaptations during fasting in healthy controls or to mouse model of chronic food restriction and refeeding. Acute and chronic food restriction decrease LEAP-2 and increase ghrelin concentrations in both humans and mice, while patients with AN displayed higher ghrelin and LEAP-2 concentrations before than after refeeding (p = 0.
View Article and Find Full Text PDFObjectives: In eating disorders, particularly anorexia nervosa (AN), patients exhibit intense physical activity which is inappropriate regarding food restriction and chronic undernutrition, and exacerbates weight loss and energy deprivation. Rodent models of food restriction exhibit increased running wheel activity in the food anticipation period, also known as Food Anticipatory Activity (FAA). FAA probably has various physiological and/or neurobiological origins.
View Article and Find Full Text PDFBackground: To plan treatment and measure post-stroke recovery, frequent and time-bounded functional assessments are recommended. With increasing needs for neurorehabilitation advances, new technology based methods, such as virtual reality (VR) have emerged. Here, we developed an immersive VR version of the Action Research Arm Test (ARAT-VR) to complement neurorehabilitation.
View Article and Find Full Text PDFCompr Psychoneuroendocrinol
August 2022
The growing interest concerning the role of metabolic sensors in various eating disorders requires the implementation of a strict methodology to collect, store and process blood samples in clinical studies. In particular, measurement of isoforms of the appetite-stimulating hormone, ghrelin, has been challenging in clinical settings. Indeed the acyl ghrelin (AG) isoform is rapidly degraded into desacyl ghrelin (DAG) by blood esterases, thus optimal conditions for the conservation of AG and accurate determination of AG/DAG ratio should be used.
View Article and Find Full Text PDFOligophrenin-1 (OPHN1) is a Rho-GTPase-activating protein (RhoGAP), whose mutations are associated with X-linked intellectual disability (XLID). OPHN1 is enriched at the synapse in both pre- and postsynaptic compartments, where it regulates the RhoA/ROCK/MLC2 signaling pathway, playing a critical role in cytoskeleton remodeling and vesicle recycling. knockout (KO) adult mice display some behavioral deficits in multiple tasks, reminiscent of some symptoms in the human pathology.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2022
Using preproghrelin-deficient mice (), we previously observed that preproghrelin modulates pulsatile growth hormone (GH) secretion in post-pubertal male mice. However, the role of ghrelin and its derived peptides in the regulation of growth parameters or feeding in females is unknown. We measured pulsatile GH secretion, growth, metabolic parameters and feeding behavior in adult and male and female mice.
View Article and Find Full Text PDFIntroduction: While the vast majority of research investigating the role of ghrelin or its receptor, GHS-R1a, in growth, feeding, and metabolism has been conducted in male rodents, very little is known about sex differences in this system. Furthermore, the role of GHS-R1a signaling in the control of pulsatile GH secretion and its link with growth or metabolic parameters has never been characterized.
Methods: We assessed the sex-specific contribution of GHS-R1a signaling in the activity of the GH/IGF-1 axis, metabolic parameters, and feeding behavior in adolescent (5-6 weeks old) or adult (10-19 weeks old) GHS-R KO (Ghsr-/-) and WT (Ghsr+/+) male and female mice.
As a polygenic psychiatric disorder, the genetics of anorexia nervosa (AN) remains largely unexplored. Recently a large GWAS meta-analysis identified a significant SNP (rs6589488) as associated with AN. We suggested that rs6589488 might have gotten its association as being in linkage disequilibrium with unknown variants or functional intronic variants.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
June 2020
Widespread random monoallelic gene expression (RMAE) effects influence about 10% of human genes. However, the mechanisms by which RME of autosomal genes is established and those by which it is maintained both remain open questions. Because the choice of allelic expression is randomly performed cell-by-cell, the RMAE mechanism is not observable in non-clonal cell populations or in whole tissues.
View Article and Find Full Text PDFMN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay.
View Article and Find Full Text PDFPurpose: Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. Up to now, four genome-wide association studies of AN have been conducted to date and identified only few significant loci. However, both previous studies focused on common variation and on rare exonic variants.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
November 2019
Anorexia nervosa (AN) is a severe debilitating eating disorder. To date, only very few genes that predispose to AN have been identified. An alternative to association studies is to characterize ultra-rare variants in familial forms of AN.
View Article and Find Full Text PDFBackground: Anorexia nervosa is a complex neuropsychiatric disorder presenting with life-threatening low body weight, and a persistent fear of gaining weight. To date, no whole exome sequencing was performed in male individuals with anorexia nervosa.
Aim And Methods: Here, we performed an exome analysis in two independent families with male individuals with anorexia nervosa and found variants in the Neuronatin (NNAT) gene in both probands.
Histone lysine methylation influences processes such as gene expression and DNA repair. Thirty Jumonji C (JmjC) domain-containing proteins have been identified and phylogenetically clustered into seven subfamilies. Most JmjC domain-containing proteins have been shown to possess histone demethylase activity toward specific histone methylation marks.
View Article and Find Full Text PDFA growing number of histone modifiers are involved in human neurodevelopmental disorders, suggesting that proper regulation of chromatin state is essential for the development of the central nervous system. Among them, heterozygous de novo variants in KMT2A, a gene coding for histone methyltransferase, have been associated with Wiedemann-Steiner syndrome (WSS), a rare developmental disorder mainly characterized by intellectual disability (ID) and hypertrichosis. As KMT2A is known to regulate the expression of multiple target genes through methylation of lysine 4 of histone 3 (H3K4me), we sought to investigate the transcriptomic consequences of KMT2A variants involved in WSS.
View Article and Find Full Text PDFVariants in KMT2A, encoding the histone methyltransferase KMT2A, are a growing cause of intellectual disability (ID). Up to now, the majority of KMT2A variants are non-sense and frameshift variants causing a typical form of Wiedemann-Steiner syndrome. We studied KMT2A gene in a cohort of 200 patients with unexplained syndromic and non-syndromic ID and identified four novel variants, one splice and three missense variants, possibly deleterious.
View Article and Find Full Text PDFGenetic findings reported by our group and others showed that de novo missense variants in the KIF2A gene underlie malformations of brain development called pachygyria and microcephaly. Though KIF2A is known as member of the Kinesin-13 family involved in the regulation of microtubule end dynamics through its ATP dependent MT-depolymerase activity, how KIF2A variants lead to brain malformations is still largely unknown. Using cellular and in utero electroporation approaches, we show here that KIF2A disease-causing variants disrupts projection neuron positioning and interneuron migration, as well as progenitors proliferation.
View Article and Find Full Text PDF