The advantage of employing mid-infrared spectrometry for milk analysis in breeding lies in its ability to quickly generate millions of records. However, these records may be biased if the calibration process does not account for their spectral variability when constructing the predictive model. Therefore, this study introduces a novel method for developing a world representative spectral database (WRSD) to reduce the risks of spectral extrapolation when predicting dairy traits in new samples.
View Article and Find Full Text PDFAt the individual cow level, suboptimum fertility, mastitis, negative energy balance, and ketosis are major issues in dairy farming. These problems are widespread on dairy farms and have an important economic impact. The objectives of this study were (1) to assess the potential of milk mid-infrared (MIR) spectra to predict key biomarkers of energy deficit (citrate, isocitrate, glucose-6 phosphate [glucose-6P], free glucose), ketosis (β-hydroxybutyrate [BHB] and acetone), mastitis (N-acetyl-β-d-glucosaminidase activity [NAGase] and lactate dehydrogenase), and fertility (progesterone); (2) to test alternative methodologies to partial least squares (PLS) regression to better account for the specific asymmetric distribution of the biomarkers; and (3) to create robust models by merging large datasets from 5 international or national projects.
View Article and Find Full Text PDFMonitoring for mastitis on dairy farms is of particular importance, as it is one of the most prevalent bovine diseases. A commonly used indicator for mastitis monitoring is somatic cell count. A supplementary tool to predict mastitis risk may be mid-infrared (MIR) spectroscopy of milk.
View Article and Find Full Text PDFStress in dairy herds can occur from multiple sources. When stress becomes chronic because of a long duration and inability of animals to adapt, it is likely to deeply affect the emotional state, health, immunity, fertility and milk production of cows. While assessing chronic stress in herds would be beneficial, no real consensus has emerged from the literature regarding the indicators of interest.
View Article and Find Full Text PDFPrebiotics, such as inulin, are non-digestible compounds that stimulate the growth of beneficial microbiota, which results in improved gut and overall health. In this study, we were interested to see if, and how, the ileal transcriptome altered after inulin administration in the pre-weaning period in pigs. Seventy-two Piétrain-Landrace newborn piglets were divided into three groups: (a) a control (CON) group ( = 24), (b) an inulin (IN)-0.
View Article and Find Full Text PDFThe strategy of improving the growth and health of piglets through maternal fiber diet intervention has attracted increasing attention. Therefore, 15 sows were conducted to a wheat bran (WB) group, in which the sows' diets included 25% of WB in gestation and 14% in lactation, and a control (CON) group, in which the sows' diets at all stages of reproduction did not contain WB. The results show that maternal high WB intervention seems not to have an impact on the growth of the offspring or the villus height of the duodenum, and the ratio of villi/crypts in the duodenum and jejunum were all higher in piglets born from WB sows, which may indicate that WB piglets had a larger absorption area and capacity for nutrients.
View Article and Find Full Text PDFBackground: In the past several years, the use of resistant starch (RS) as prebiotic has extensively been studied in pigs, and this mostly in the critical period around weaning. RS is believed to exert beneficial effects on the gastrointestinal tract mainly due to higher levels of short chain fatty acids (SCFAs) and an improved microbiota profile. In this study, sows were fed digestible starch (DS) or RS during late gestation and lactation and the possible maternal effect of RS on the overall health of the progeny was assessed.
View Article and Find Full Text PDFInulin and wheat bran were added to broiler diets during the starter period or during the entire rearing period to investigate whether the effects of using these ingredients remained until slaughter age. Diets containing no inulin and no wheat bran (CON), 2% inulin (IN), 10% wheat bran (WB), or 2% inulin + 10% wheat bran (IN+WB) were provided until day 11. Thereafter, each dietary treatment was further divided into a continued diet with supplementation or a control diet, resulting in 7 groups (CON, IN/IN, IN/CON, WB/WB, WB/CON, IN+WB/IN+WB, or IN+WB/CON).
View Article and Find Full Text PDFThe aim of this study was to investigate the effect of inulin (IN) supplementation to suckling piglets at and 3 weeks post-weaning. A total of 72 newborn piglets were used. Twenty-four piglets per group received different amounts of IN during the suckling period: (a) CON: no IN; (b) IN-0.
View Article and Find Full Text PDFBackground: Establishment of a beneficial microbiota profile for piglets as early in life as possible is important as it will impact their future health. In the current study, we hypothesized that resistant starch (RS) provided in the maternal diet during gestation and lactation will be fermented in their hindgut, which would favourably modify their milk and/or gut microbiota composition and that it would in turn affect piglets' microbiota profile and their absorptive and immune abilities.
Methods: In this experiment, 33% of pea starch was used in the diet of gestating and lactating sows and compared to control sows.
Inulin and wheat bran were added to the starter diets of broiler chickens to investigate the potential of these ingredients to improve the host's health and growth performance, as well as the underlying mechanisms of their effects. A total of 960 1-day-old chicks were assigned to 4 treatments: control (CON), 2% inulin (IN), 10% wheat bran (WB), and 10% wheat bran +2% inulin (WB+IN). On day 11, 6 chicks per treatment were euthanized.
View Article and Find Full Text PDFSeveral studies in mammals focused on the maternal programming of the metabolism by epigenetic mechanisms, while currently, the consequences of a maternal dietary treatment on the offspring performance of farm animals are of particular interest for commercial purpose. In the present study, we investigated if the zootechnical performance of the progeny was altered by a maternal dietary treatment, being a lower dietary crude protein (CP) of the grandparent and/or parent generation. The multigenerational effects of a reduced maternal CP content were investigated by reducing the dietary CP level by 25% in rearing and laying diets of pure line A breeders.
View Article and Find Full Text PDFMammalian studies have shown that nutritional constraints during the perinatal period are able to program the progeny (metabolism, performance). The presented research aimed to investigate if broiler breeders and their offspring performance could be influenced by reducing the dietary crude protein (CP) level with 25%. A total of 160 day-old pure line A breeder females were randomly divided over 2 dietary treatments.
View Article and Find Full Text PDFReaching a beneficial intestinal microbiota early in life is desirable for piglets, as microbiota will impact their future health. One strategy to achieve this is the addition of prebiotics to sows' diet, as their microbiota will be transferred. Transmission of microbiota to the offspring occurs at birth and during lactation but a transfer might also occur during gestation.
View Article and Find Full Text PDF