Publications by authors named "Lebedenko E"

Two radiopharmaceutical preparations were developed on the basis of artificial targeted polypeptide ZHER2 specific to HER2/neu tumor marker and radionuclides Lu (ZHER2-HSA-chelator-Lu) or Pb (ZHER2-HSA-chelator-Pb). The objective was to evaluate in vitro the cytotoxic activity of the targeted radiopharmaceuticals using two cultured human breast cancer cell lines with different expression of HER2/neu: SK-BR3 (high expression of HER2/neu) and MCF-7 (low expression of HER2/neu). It was shown that the cytotoxic effect of both preparations was significantly higher against the SK-BR-3 cells.

View Article and Find Full Text PDF

Today, it has become apparent that innovative treatment methods, including those involving simultaneous diagnosis and therapy, are particularly in demand in modern cancer medicine. The development of nanomedicine offers new ways of increasing the therapeutic index and minimizing side effects. The development of photoactivatable dyes that are effectively absorbed in the first transparency window of biological tissues (700-900 nm) and are capable of fluorescence and heat generation has led to the emergence of phototheranostics, an approach that combines the bioimaging of deep tumors and metastases and their photothermal treatment.

View Article and Find Full Text PDF

The activity of amino acid metabolism enzymes and the content of free amino acids in the placenta during physiological pregnancy and placental insufficiency (PI) were studied using spectrophotometric methods and ion-exchange chromatography. It was found that in PI placental activity of the studied enzymes: alanine-, cysteine-e, tyrosine-, glutamino- transferase, glutathione synthetase, glutamate dehydrogenase decreases at different periods of gestation. The opposite variations occur for aspartataminotranferase and glutaminase.

View Article and Find Full Text PDF

The content of amino acids in maternal serum and umbilical cord blood during physiological pregnancy and placental insufficiency (PI) was estimated using ion-exchange chromatography. It was found that that the content of arginine, serine, glutamine, alanine, cysteine, methionine, tryptophan, leucine, phenylalanine and proline, which are involved in many metabolic processes necessary to maintain the normal functioning of the mother-placenta-fetus system, was decreases in maternal serum at PI. Opposite deviations have dicarboxylic amino acids, lysine, histidine, glycine, tyrosine and threonine, the number of which increases, strengthening the nitrogen imbalance.

View Article and Find Full Text PDF

In this review, the authors' works published within the past 5 years devoted to the development of bifunctional hybrid nanostructures based on the targeting polypeptides and nanoparticles of various origin (quantum dots, nanogold, nanodiamonds, upconversion nanoparticles, magnetic and polymer nanoparticles) as modules that ensure visualization and various damaging effects on cancer cells are surveyed and the prospects of their application in theranostics and precision medicine have been contemplated.

View Article and Find Full Text PDF

This mini-review summarizes recent data obtained in the process of creation of a versatile module platform suitable for construction of supramolecular theranostic agents. As an example, we consider multifunctional hybrid agents for imaging and elimination of cancer cells. The use of an adapter protein system barnase:barstar for producing targeted multifunctional hybrid structures on the basis of highly specific peptides and mini-antibodies as addressing modules and recombinant proteins and/or nanoparticles of different nature (quantum dots, nanogold, magnetic nanoparticles, nanodiamonds, upconverting nanophosphores, polymer nanoparticles) as agents visualizing and damaging cancer cells is described.

View Article and Find Full Text PDF

Design and evaluation of new high-affinity protein compounds that can selectively and efficiently destroy human cancer cells are a priority research area in biomedicine. In this study we report on the ability of the recombinant phototoxic protein DARPin-miniSOG to interact with breast adenacarcinoma human cells overexpressing the extracellular domain of human epidermal growth factor receptor 2 (HER2). It was found that the targeted phototoxin DARPin-miniSOG specifically binds to the HER2 with following internalization and slow recycling back to the cell membrane.

View Article and Find Full Text PDF

The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the "transparency window" of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct.

View Article and Find Full Text PDF

Semiconductor quantum dots represent a novel class of fluorophores with unique physical and chemical properties which could enable a remarkable broadening of the current applications of fluorescent imaging and optical diagnostics. Complexes of quantum dots and antibodies are promising visualising agents for fluorescent detection of selective biomarkers overexpressed in tumor tissues. Here we describe the construction of self-assembling fluorescent complexes of quantum dots and anti-HER1 or anti-HER2/neu scFv antibodies and their interactions with cultured tumor cells.

View Article and Find Full Text PDF

Far-red and near-infrared fluorescent quantum dots (QDs) have become advancing contrast agents for efficient whole-body tumor imaging. In this study, we investigated the possibility of the vital fluorescence imaging of tumor using two contrast agents on the basis of QDs: bioinert QDs coated with polyethyleneglycol and QDs bound with anti-HER2/neu scFv antibodies. HER2/neu-positive breast cancer tumor xenografts in nude mice were used as a model.

View Article and Find Full Text PDF

General properties of the family of tyrosine kinase ERBB receptors are considered in connection with their role in the generation of cascades of signal transduction in normal and tumor cells. Causes of acquisition of oncogene features by genes encoding these receptors and their role in tumorigenesis are analyzed. Anti-ERBB monoclonal antibodies approved for therapy are described in detail, and mechanisms of their antitumor activity and development of resistance to them are reviewed.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imagingin vivo. We also point out the essential problems that require resolution in order to clinically promote QD, and we indicate innovative approaches to oncology which are implementable using QD.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) coupled with cancer-specific targeting ligands are new promising agents for fluorescent visualization of cancer cells. Human epidermal growth factor receptor 2/neu (HER2/neu), overexpressed on the surface of many cancer cells, is an important target for cancer diagnostics. Antibody scFv fragments as a targeting agent for direct delivery of fluorophores offer significant advantages over full-size antibodies due to their small size, lower cross-reactivity, and immunogenicity.

View Article and Find Full Text PDF

The modular structure and versatility of antibodies enables one to modify natural immunoglobulins in different ways for various clinical applications. Rational design and molecular engineering make it possible to directionally modify the molecular size, affinity, specificity, and immunogenicity and effector functions of an antibody, as well as to combine them with other functional agents. This review focuses on up-to-date methods of antibody engineering for diagnosing and treating various diseases, particularly on new technologies meant to refine the effector functions of therapeutic antibodies.

View Article and Find Full Text PDF

High-precision tumor targeting with conventional therapeutics is based on the concept of the ideal drug as a "magic bullet"; this became possible after techniques were developed for production of monoclonal antibodies (mAbs). Innovative DNA technologies have revolutionized this area and enhanced clinical efficiency of mAbs. The experience of applying small-size recombinant antibodies (monovalent binding fragments and their derivatives) to cancer targeting showed that even high-affinity monovalent interactions provide fast blood clearance but only modest retention time on the target antigen.

View Article and Find Full Text PDF

The ribonuclease barnase (12 kDa) and its inhibitor barstar (10 kDa) form a very tight complex in which all N and C termini are accessible for fusion. Here we exploit this system to create modular targeting molecules based on antibody scFv fragment fusions to barnase, to two barnase molecules in series and to barstar. We describe the construction, production and purification of defined dimeric and trimeric complexes.

View Article and Find Full Text PDF

The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae.

View Article and Find Full Text PDF

Analysis of literary data (for Saccharomyces cerevisiae, Caenorhabditis elegans, Arabidopsis thaliana, Homo sapiens, and some other Eucarya) and our data (for Schizosaccharomyces pombe) on the exon-intron organization of the genes encoding subunits of nuclear RNA polymerases showed that introns in the orthologous genes from different organisms are arranged nonrandomly, namely, their positions, if projected on the map of the comparison of the amino acid sequences of the orthologous subunits, not infrequently coincide in evolutionarily distant species. As a rule, intron positions correspond to the boundaries of the structurally conserved regions (domains) or to the sites of possible turns of the polypeptide chain. For example, introns flank the secondary structure elements in the Rpb8 subunit with the known three-dimensional structure or the structure-function modules in subunits Rpb10 and Rpc10.

View Article and Find Full Text PDF

Full-length cDNAs of four new genes encoding cytoplasmic ribosomal proteins L14 and L20 (large ribosomal subunit) and S1 and S27 (small ribosomal subunit) were isolated and sequenced during the analysis of the fission yeast Schizosaccharomyces pombe genome. One of the Sz. pombe genes encoding translation elongation factor EF-2 was also cloned and its precise position on chromosome I established.

View Article and Find Full Text PDF

A full-length cDNA of the rpb8+ gene encoding a common subunit Rpb8 of nuclear RNA polymerases I-III only specific for Eucarya was isolated from an expression library of the fission yeast Schizosaccharomyces pombe. The primary structure of the corresponding fragment of the Sz. pombe genome was also established.

View Article and Find Full Text PDF

Full-length copies of cDNA of the hRPC11 gene encoding the smallest specific subunit of nuclear RNA polymerase III were identified among human transcripts with the use of the RT-PCR technique. The cloning of the first orthologue of the subunit RPC11 from a multicellular organism and the comparison of subunit hRPC11 of Homo sapiens (108 aa; M(r), 12.3 kDa; pI 8.

View Article and Find Full Text PDF

Plasmid pYUK3 bearing the fet5+ gene of Schizosaccharomyces pombe was isolated from a genomic library of the fission yeast, and a detailed physical map of the whole genomic insert (ca. 9.6 Kbp) was constructed.

View Article and Find Full Text PDF