Osteoporosis is characterized by low bone mass and structural deterioration of bone tissue, which leads to bone fragility (ie, weakness) and an increased risk for fracture. The current standard for assessing bone health and diagnosing osteoporosis is DXA, which quantifies areal BMD, typically at the hip and spine. However, DXA-derived BMD assesses only one component of bone health and is notably limited in evaluating the bone strength, a critical factor in fracture resistance.
View Article and Find Full Text PDFIntroduction: Certain genes increase the risk of age-related neurological dysfunction and/or disease. For instance, ApoE is a well-known gene carrying risk for Alzheimer's disease, while COMT has been associated with age-related reductions in motor function. There is growing interest in the interrelationship between age-related changes in cognitive and motor function, and examining gene-gene interactions in this context.
View Article and Find Full Text PDFAging Clin Exp Res
September 2022
There is increasing interest in using motor function tests to identify risk of cognitive impairment in older adults (OA). This study examined associations among grip strength, with and without adjustment for muscle mass, manual dexterity and Trail Making Test (TMT) A and B in 77 OA (73.4 ± 5.
View Article and Find Full Text PDFBackground: Approximately 35% of individuals over age 70 report difficulty with mobility. Muscle weakness has been demonstrated to be one contributor to mobility limitations in older adults. The purpose of this study was to examine the moderating effect of brain-predicted age difference (an index of biological brain age/health derived from structural neuroimaging) on the relationship between leg strength and mobility.
View Article and Find Full Text PDFBackground: Older adults display wide individual variability (heterogeneity) in the effects of resistance exercise training on muscle strength. The mechanisms driving this heterogeneity are poorly understood. Understanding of these mechanisms could permit development of more targeted interventions and/or improved identification of individuals likely to respond to resistance training interventions.
View Article and Find Full Text PDFThe purpose of this study was to quantify head motion between isometric erector spinae (ES) contraction strategies, paradigms, and intensities in the development of a neuroimaging protocol for the study of neural activity associated with trunk motor control in individuals with low back pain. Ten healthy participants completed two contraction strategies; (1) a supine upper spine (US) press and (2) a supine lower extremity (LE) press. Each contraction strategy was performed at electromyographic (EMG) contraction intensities of 30, 40, 50, and 60% of an individually determined maximum voluntary contraction (MVC) (±10% range for each respective intensity) with real-time, EMG biofeedback.
View Article and Find Full Text PDFThe capacity to move is essential for independence and declines with age. Slow movement speed, in particular, is strongly associated with negative health outcomes. Prior research on mobility (herein defined as movement slowness) and aging has largely focused on musculoskeletal mechanisms and processes.
View Article and Find Full Text PDFBackground: Approximately 35% of individuals > 70 years have mobility limitations. Historically, it was posited lean mass and muscle strength were major contributors to mobility limitations, but recent findings indicate lean mass and muscle strength only moderately explain mobility limitations. One likely reason is that lean mass and muscle strength do not necessarily incorporate measures globally reflective of motor function (defined as the ability to learn, or to demonstrate, the skillful and efficient assumption, maintenance, modification, and control of voluntary postures and movement patterns).
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
March 2021
Background: Weakness is a risk factor for physical limitations and death in older adults (OAs). We sought to determine whether OAs with clinically meaningful leg extensor weakness exhibit differences in voluntary inactivation (VIA) and measures of corticospinal excitability when compared to young adults (YAs) and OAs without clinically meaningful weakness. We also sought to estimate the relative contribution of indices of neural excitability and thigh lean mass in explaining the between-subject variability in OAs leg extensor strength.
View Article and Find Full Text PDFThis cross-sectional study compares voluntary neural activation of lower extremity muscles in clinically weak older adults vs stronger older adults.
View Article and Find Full Text PDFThe capacity to move is essential for independence and declines with age. Limitations in mobility impact ~35% of adults over 70 and the majority of adults over 85. These limitations are highly associated with disability, dependency, and survival.
View Article and Find Full Text PDFBackground And Purpose: Muscle weakness predisposes older adults to a fourfold increase in functional limitations and has previously been associated with reduced motor cortex excitability in aging adults. The purpose of this study was to determine whether a single session of anodal transcranial direct current stimulation (tDCS) of the motor cortex would increase elbow flexion muscle strength and electromyographic (EMG) amplitude in very old individuals.
Methods: Eleven very old individuals-85.
Annu Rev Gerontol Geriatr
January 2016
For well over twenty centuries the muscle wasting (sarcopenia) and weakness (dynapenia) that occurs with old age has been a predominant concern of mankind. Exercise has long been suggested as a treatment to combat sarcopenia and dynapenia, as it exerts effects on both the nervous and muscular systems that are critical to positive physiological and functional adaptations (e.g.
View Article and Find Full Text PDF