Background: The aging of the skin, particularly around the periorbital region, is a complex process characterized by the accumulation of senescent cells, decreased collagen production, and reduced skin elasticity, leading to visible signs such as fine lines, wrinkles, and sagging.
Objective: This study investigates the efficacy of a novel topical formulation, OS-01 EYE, containing the senomorphic peptide, OS-01, along with other active ingredients, in improving the skin around the eyes.
Methods: A 12-week clinical study was conducted with 22 participants who applied OS-01 EYE twice daily.
Introduction: Senescent cells contribute to age-related tissue deterioration, including the skin, which plays important roles in overall health and social interactions. This study aimed to assess the effects of the senotherapeutic peptide, OS-01 (a.k.
View Article and Find Full Text PDFCellular senescence is known to play a role in age-related skin function deterioration which potentially influences longevity. Here, a two-step phenotypic screening was performed to identify senotherapeutic peptides, leading to the identification of Peptide (Pep) 14. Pep 14 effectively decreased human dermal fibroblast senescence burden induced by Hutchinson-Gilford Progeria Syndrome (HGPS), chronological aging, ultraviolet-B radiation (UVB), and etoposide treatment, without inducing significant toxicity.
View Article and Find Full Text PDFSenotherapeutic molecules decrease cellular senescence burden, constituting promising approaches to combat the accumulation of senescent cells observed in chronological aging and age-related diseases. Numerous molecules have displayed senotherapeutic potential, but toxicity has been frequently observed. Recently, a new senotherapeutic compound, Peptide 14, was developed to modulate cellular senescence in the skin.
View Article and Find Full Text PDFRadiation therapy damages and depletes total bone marrow (BM) cellularity, compromising safety and limiting effective dosing. Aging also strains total BM and BM hematopoietic stem and progenitor cell (HSPC) renewal and function, resulting in multi-system defects. Interventions that preserve BM and BM HSPC homeostasis thus have potential clinical significance.
View Article and Find Full Text PDFCockayne syndrome (CS) is a rare, autosomal genetic disorder characterized by premature aging-like features, such as cachectic dwarfism, retinal atrophy, and progressive neurodegeneration. The molecular defect in CS lies in genes associated with the transcription-coupled branch of the nucleotide excision DNA repair (NER) pathway, though it is not yet clear how DNA repair deficiency leads to the multiorgan dysfunction symptoms of CS. In this work, we used a mouse model of severe CS with complete loss of NER (), which recapitulates several CS-related phenotypes, resulting in premature death of these mice at approximately 20 weeks of age.
View Article and Find Full Text PDFBackground: DNA methylation (DNAm) age constitutes a powerful tool to assess the molecular age and overall health status of biological samples. Recently, it has been shown that tissue-specific DNAm age predictors may present superior performance compared to the pan- or multi-tissue counterparts. The skin is the largest organ in the body and bears important roles, such as body temperature control, barrier function, and protection from external insults.
View Article and Find Full Text PDFHypertriglyceridemia is an independent risk factor for cardiovascular disease. Dietary interventions based on protein restriction (PR) reduce circulating triglycerides (TGs), but underlying mechanisms and clinical relevance remain unclear. Here, we show that 1 week of a protein-free diet without enforced calorie restriction significantly lowered circulating TGs in both lean and diet-induced obese mice.
View Article and Find Full Text PDFAngiogenesis, the formation of new blood vessels by endothelial cells (ECs), is an adaptive response to oxygen/nutrient deprivation orchestrated by vascular endothelial growth factor (VEGF) upon ischemia or exercise. Hypoxia is the best-understood trigger of VEGF expression via the transcription factor HIF1α. Nutrient deprivation is inseparable from hypoxia during ischemia, yet its role in angiogenesis is poorly characterized.
View Article and Find Full Text PDFAccumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient mouse model of CS.
View Article and Find Full Text PDFDecreased growth hormone (GH) and thyroid hormone (TH) signaling are associated with longevity and metabolic fitness. The mechanisms underlying these benefits are poorly understood, but may overlap with those of dietary restriction (DR), which imparts similar benefits. Recently we discovered that hydrogen sulfide (HS) is increased upon DR and plays an essential role in mediating DR benefits across evolutionary boundaries.
View Article and Find Full Text PDFDietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance.
View Article and Find Full Text PDFMitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential.
View Article and Find Full Text PDFCockayne syndrome (CS) is a rare autosomal recessive segmental progeria characterized by growth failure, lipodystrophy, neurological abnormalities, and photosensitivity, but without skin cancer predisposition. Cockayne syndrome life expectancy ranges from 5 to 16 years for the two most severe forms (types II and I, respectively). Mouse models of CS have thus far been of limited value due to either very mild phenotypes, or premature death during postnatal development prior to weaning.
View Article and Find Full Text PDFUnlabelled: While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines.
View Article and Find Full Text PDFPrior studies have identified recurrent oncogenic mutations in colorectal adenocarcinoma and have surveyed exons of protein-coding genes for mutations in 11 affected individuals. Here we report whole-genome sequencing from nine individuals with colorectal cancer, including primary colorectal tumors and matched adjacent non-tumor tissues, at an average of 30.7× and 31.
View Article and Find Full Text PDFInteins are the protein equivalent of introns. They are remarkable and robust single turnover enzymes that splice out of precursor proteins during post-translational maturation of the host protein (extein). The Deinococcus radiodurans Snf2 intein is the second member of the recently discovered Class 3 subfamily of inteins to be characterized.
View Article and Find Full Text PDFInteins are single turnover enzymes that splice out of protein precursors during maturation of the host protein (extein). The Cys or Ser at the N terminus of most inteins initiates a four-step protein splicing reaction by forming a (thio)ester bond at the N-terminal splice junction. Several recently identified inteins cannot perform this acyl rearrangement because they do not begin with Cys, Thr, or Ser.
View Article and Find Full Text PDFCertain proteins of unicellular organisms are translated as precursor polypeptides containing inteins (intervening proteins), which are domains capable of performing protein splicing. These domains, in conjunction with a single residue following the intein, catalyze their own excision from the surrounding protein (extein) in a multistep reaction involving the cleavage of two intein-extein peptide bonds and the formation of a new peptide bond that ligates the two exteins to yield the mature protein. We report here the solution NMR structure of a 186-residue precursor of the KlbA intein from Methanococcus jannaschii, comprising the intein together with N- and C-extein segments of 7 and 11 residues, respectively.
View Article and Find Full Text PDF