Publications by authors named "Leanne de Silva"

Endochondral bone regeneration is a promising approach in regenerative medicine. Callus mimics (CMs) are engineered and remodeled into bone tissue upon implantation. The long-term objective is to fabricate a sustainable off-the-shelf treatment option for patients.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of engineered cartilage models to promote bone regeneration through a process called endochondral bone regeneration (EBR) in a large animal model.
  • It involves inducing cartilage formation in goat-derived cells and creating two different biomaterials that simulate various stages of soft callus development.
  • Results showed that the more advanced biomaterial led to significant bone regeneration similar to traditional grafting methods, highlighting potential for future clinical applications in humans.
View Article and Find Full Text PDF

Advanced in vitro human bone defect models can contribute to the evaluation of materials for in situ bone regeneration, addressing both translational and ethical concerns regarding animal models. In this study, we attempted to develop such a model to study material-driven regeneration, using a tissue engineering approach. By co-culturing human umbilical vein endothelial cells (HUVECs) with human bone marrow-derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds with in vitro critically sized defects, the growth of vascular-like networks and three-dimensional bone-like tissue was facilitated.

View Article and Find Full Text PDF

The development of tissue engineering strategies for treatment of large bone defects has become increasingly relevant, given the growing demand for bone substitutes. Native bone is composed of a dense vascular network necessary for the regulation of bone development, regeneration and homeostasis. A major obstacle in fabricating living, clinically relevant-sized bone mimics (1-10 cm) is the limited supply of nutrients, including oxygen to the core of the construct.

View Article and Find Full Text PDF

The purpose of this work was to study the biodistribution of niosomes in tumor-implanted BALB/c mice using gamma scintigraphy. Niosomes were first formulated and characterized, then radiolabeled with Technetium-99 m (Tc). The biodistribution of 99mTc-labeled niosomes was evaluated in tumor-bearing mice through intravenous injection and imaged with gamma scintigraphy.

View Article and Find Full Text PDF

Background And Purpose: Niosomes are nonionic surfactant-based vesicles that exhibit certain unique features which make them favorable nanocarriers for sustained drug delivery in cancer therapy. Biodistribution studies are critical in assessing if a nanocarrier system has preferential accumulation in a tumor by enhanced permeability and retention effect. Radiolabeling of nanocarriers with radioisotopes such as Technetium-99m (Tc) will allow for the tracking of the nanocarrier noninvasively via nuclear imaging.

View Article and Find Full Text PDF

Vitamin E is recognized as an essential vitamin since its discovery in 1922. Most vegetable oils contain a mixture of tocopherols and tocotrienols in the vitamin E composition. Structurally, tocopherols and tocotrienols share a similar chromanol ring and a side chain at the C-2 position.

View Article and Find Full Text PDF

Tumor metastasis involves some of the most complex and dynamic processes in cancer, often leading to poor quality of life and inevitable death. The search for therapeutic compounds and treatment strategies to prevent and/or manage metastasis is the ultimate challenge to fight cancer. In the past two decades, research focus on vitamin E has had a shift from saturated tocopherols to unsaturated tocotrienols (T3).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6alnb9ie5path42fc7svuobl2urp4ri5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once