Storytelling is a powerful means to evoke empathy and understanding among people. When patient partners, which include patients, family members, caregivers and organ donors, share their stories with health professionals, this can prompt listeners to reflect on their practice and consider new ways of driving change in the healthcare system. However, a growing number of patient partners are asked to 'share their story' within health care and research settings without adequate support to do so.
View Article and Find Full Text PDFThe PIWI clade of Argonaute proteins is essential for spermatogenesis in all species examined to date. This protein family binds specific classes of small non-coding RNAs known as PIWI-interacting RNAs (piRNAs) which together form piRNA-induced silencing complexes (piRISCs) that are recruited to specific RNA targets through sequence complementarity. These complexes facilitate gene silencing through endonuclease activity and guided recruitment of epigenetic silencing factors.
View Article and Find Full Text PDFCan J Kidney Health Dis
December 2022
Purpose Of Conference: New discoveries arising from investigations into fundamental aspects of kidney development and function in health and disease are critical to advancing kidney care. Scientific meetings focused specifically on fundamental biology of the kidney can facilitate interactions, support the development of collaborative groups, and accelerate translation of key findings. The Canadian fundamental kidney researcher community has lacked such a forum.
View Article and Find Full Text PDFThis study aimed to describe the viability of domestic feline spermatozoa after epididymal tail vitrification. For this, 10 pairs of testis-epididymis complexes were used. The epididymal tails were vitrified using the solid-surface vitrification (SSV) method, in which two vitrification media containing ethylene glycol (EG) 40% or glycerol (GLY) 40% were tested.
View Article and Find Full Text PDFBisphenol A (BPA) and its alternative, bisphenol S (BPS), are widespread endocrine disrupting compounds linked in several studies to poor female fertility. Sufficient oocyte competence and subsequent embryo development are highly dependent on oocyte maturation, an intricate process that is vulnerable to BPA. These effects as well as the effects of its analog, BPS, have not been fully elucidated.
View Article and Find Full Text PDFProtein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the proteome level. We develop MethylSight, a program that predicts Kme events solely on the physicochemical properties of residues surrounding the putative methylation sites, which then requires validation by targeted MS.
View Article and Find Full Text PDFObjectives: RNA isolation is necessary for the evaluation of gene expression. Due to the nature of its extracellular matrix, RNA isolation from articular hyaline cartilage is difficult and thus the tissue is commonly enzymatically digested in order to extract RNA from the obtained chondrocytes. We hypothesized that the digestion process affects the expression levels of common cartilage-associated genes.
View Article and Find Full Text PDFMicroRNAs are potent regulators of gene expression that have been widely implicated in reproduction and embryo development. Recent studies have demonstrated that miR-21, a microRNA extensively studied in the context of disease, is important in multiple facets of reproductive biology including folliculogenesis, ovulation, oocyte maturation and early mammalian development. Surprisingly, little is known about the mechanisms that regulate miR-21 and no studies have characterized these regulatory pathways in cumulus-oocyte complexes (COCs).
View Article and Find Full Text PDFPIWI proteins and their associated piRNAs have been the focus of intensive research in the past decade; therefore, their participation in the maintenance of genomic integrity during spermatogenesis has been well established. Recent studies have suggested important roles for the PIWI/piRNA system outside of gametogenesis, based on the presence of piRNAs and PIWI proteins in several somatic tissues, cancers, and the early embryo. Here, we investigated the small RNA complement present in bovine gonads, gametes, and embryos through next-generation sequencing.
View Article and Find Full Text PDFPIWI proteins are members of the larger Argonaute family and bind to specific 24-32 nucleotide RNAs called PIWI-interacting RNAs (piRNAs). PIWI-interacting RNAs direct PIWI-mediated suppression of retrotransposon expression in the male germline in humans and mice, but their roles in bovine reproduction and embryogenesis are unknown. Although the majority of research in mammals has focused on the functions of PIWI proteins during spermatogenesis, this family of proteins and their associated piRNAs have recently been identified in early embryos.
View Article and Find Full Text PDFSpermatogenesis is a highly regulated process leading to the development of functional spermatozoa through meiotic division and subsequent maturation. Recent studies have suggested that a novel class of Argonaute proteins, known as the PIWI clade, plays important roles in multiple stages of spermatogenesis. PIWI proteins bind specific small noncoding RNAs, called PIWI-interacting RNAs (piRNAs).
View Article and Find Full Text PDFBackground: Platelet-derived growth factors (PDGFs) bind to two receptors, PDGFRα and PDGFRβ to mediate cell proliferation, migration and survival. Although epithelial cells typically do not express high levels of PDGFRs, their expression has been reported to increase in breast cancer cells that have undergone epithelial to mesenchymal transition.
Methods: PDGFR signaling was inhibited using Sunitinib malate, Imatinib mesylate or Regorafenib in murine and human luminal-like and claudin-low mammary tumor cell lines or Masitinib in only the human cell lines.
The histone demethylases are a relatively novel family of histone-modifying enzymes. Their gene expression suggests that each of the subfamily members may have a discrete role in cell function. The KDM5 family of H3K4 histone demethylases has four members.
View Article and Find Full Text PDFSignificant neurological disorders can result from subtle perturbations of gene regulation that are often linked to epigenetic regulation. Proteins that regulate the methylation of lysine 4 of histone H3 (H3K4) and play a central role in epigenetic regulation, and mutations in genes encoding these enzymes have been identified in both autism and Rett syndrome. The H3K4 demethylases remove methyl groups from lysine 4 leading to loss of RNA polymerase binding and transcriptional repression.
View Article and Find Full Text PDFThe histone demethylase lysine demethylase 5b (KDM5b) specifically demethylates lysine 4 of histone H3 (meH3K4), thereby repressing gene transcription. KDM5b regulates cell cycle control genes in cancer and is expressed in the early epiblast. This suggests that KDM5b plays a developmental role by maintaining uncommitted progenitors.
View Article and Find Full Text PDFThe phospholipid composition of the membrane and transporter structure control the subcellular location and function of osmosensory transporter ProP in Escherichia coli. Growth in media of increasing osmolality increases, and entry to stationary phase decreases, the proportion of phosphatidate in anionic lipids (phosphatidylglycerol (PG) plus cardiolipin (CL)). Both treatments increase the CL:PG ratio.
View Article and Find Full Text PDFThe osmolality required to activate osmosensory transporter ProP and the proportion of cardiolipin (CL) among the phospholipids of Escherichia coli rise with growth medium osmolality. Most CL synthesis has been attributed to the cls gene product. Transcription of cls increased with osmolality.
View Article and Find Full Text PDF