Publications by authors named "Leanne Hirshfield"

Neuroimaging studies using functional magnetic resonance imaging (fMRI) have provided unparalleled insights into the fundamental neural mechanisms underlying human cognitive processing, such as high-level linguistic processes during reading. Here, we build upon this prior work to capture sentence reading comprehension outside the MRI scanner using functional near infra-red spectroscopy (fNIRS) in a large sample of participants (n = 82). We observed increased task-related hemodynamic responses in prefrontal and temporal cortical regions during sentence-level reading relative to the control condition (a list of non-words), replicating prior fMRI work on cortical recruitment associated with high-level linguistic processing during reading comprehension.

View Article and Find Full Text PDF

To succeed, effective teams depend on both cooperative and competitive interactions between individual teammates. Depending on the context, cooperation and competition can amplify or neutralize a team's problem solving ability. Therefore, to assess successful collaborative problem solving, it is first crucial to distinguish competitive from cooperative interactions.

View Article and Find Full Text PDF

Functional Near-Infrared Spectroscopy (fNIRS) is an innovative and promising neuroimaging modality for studying brain activity in real-world environments. While fNIRS has seen rapid advancements in hardware, software, and research applications since its emergence nearly 30 years ago, limitations still exist regarding all three areas, where existing practices contribute to greater bias within the neuroscience research community. We spotlight fNIRS through the lens of different end-application users, including the unique perspective of a fNIRS manufacturer, and report the challenges of using this technology across several research disciplines and populations.

View Article and Find Full Text PDF

Intelligent agents are rapidly evolving from assistants into teammates as they perform increasingly complex tasks. Successful human-agent teams leverage the computational power and sensory capabilities of automated agents while keeping the human operator's expectation consistent with the agent's ability. This helps prevent over-reliance on and under-utilization of the agent to optimize its effectiveness.

View Article and Find Full Text PDF

Predicting workload using physiological sensors has taken on a diffuse set of methods in recent years. However, the majority of these methods train models on small datasets, with small numbers of channel locations on the brain, limiting a model's ability to transfer across participants, tasks, or experimental sessions. In this paper, we introduce a new method of modeling a large, cross-participant and cross-session set of high density functional near infrared spectroscopy (fNIRS) data by using an approach grounded in cognitive load theory and employing a Bi-Directional Gated Recurrent Unit (BiGRU) incorporating attention mechanism and self-supervised label augmentation (SLA).

View Article and Find Full Text PDF

Objective: The objective was to review and integrate available research about the construct of state-level suspicion as it appears in social science literatures and apply the resulting findings to information technology (IT) contexts.

Background: Although the human factors literature is replete with articles about trust (and distrust) in automation, there is little on the related, but distinct, construct of "suspicion" (in either automated or IT contexts). The construct of suspicion--its precise definition, theoretical correlates, and role in such applications--deserves further study.

View Article and Find Full Text PDF