Publications by authors named "Leanne E Fisher"

A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in the modulation of the host immune response and are the cells responsible for persistent inflammatory reactions to implanted biomaterials. Two novel immune-instructive polymers that stimulate pro- or anti-inflammatory responses from macrophages in vitro are investigated.

View Article and Find Full Text PDF

The Three-dimensional OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) is a secondary ion mass spectrometry instrument, a combination of a Time of Flight (ToF) instrument with an Orbitrap analyzer. The 3D OrbiSIMS technique is a powerful tool for metabolic profiling in biological samples. This can be achieved at subcellular spatial resolution, high sensitivity, and high mass-resolving power coupled with MS/MS analysis.

View Article and Find Full Text PDF

Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic nonhealing wounds. Fibroblasts are a critical cell type involved in the formation of granulation tissue, essential for effective wound healing.

View Article and Find Full Text PDF

Immune instructive materials, are materials with the ability to modulate or mimic the function of immune cells, provide exciting opportunities for developing new therapies in many areas including medical devices, chronic inflammation, cancer, and autoimmune diseases. In this review we highlight some of the latest research involving material-based strategies for modulating macrophage phenotype and dendritic cell function, as well as a brief description on biomaterial use in T cell and natural killer cell engineering. We highlight studies on material topography, size, shape and surface chemistry to reduce inflammation, along with scaffold and hydrogel delivery systems that are used for modulating DC phenotype and influencing T cell polarization.

View Article and Find Full Text PDF

Infections resulting from bacterial biofilm formation on the surface of medical devices are challenging to treat and can cause significant patient morbidity. Recently, it has become apparent that regulation of surface nanotopography can render surfaces bactericidal. In this study, poly(ethylene terephthalate) nanocone arrays are generated through a polystyrene nanosphere-mask colloidal lithographic process.

View Article and Find Full Text PDF
Article Synopsis
  • Making better materials for implants can help them last longer and work better in the body, which is important for healing injuries.
  • The goal is to create surfaces that not only help stem cells stick and grow to repair tissue but also stop bad bacteria from attaching to them.
  • Researchers are using special coatings and textures on materials like titanium to improve how well they can heal and fight off bacteria at the same time.
View Article and Find Full Text PDF

The formation of biofilms on implant surfaces and the subsequent development of medical device-associated infections are difficult to resolve and can cause considerable morbidity to the patient. Over the past decade, there has been growing recognition that physical cues, such as surface topography, can regulate biological responses and possess bactericidal activity. In this study, diamond nanocone-patterned surfaces, representing biomimetic analogs of the naturally bactericidal cicada fly wing, were fabricated using microwave plasma chemical vapor deposition, followed by bias-assisted reactive ion etching.

View Article and Find Full Text PDF

Catheter-associated urinary tract infection (CAUTI) is the commonest hospital-acquired infection, accounting for over 100,000 hospital admissions within the USA annually. Biomaterials and processes intended to reduce the risk of bacterial colonization of the catheters for long-term users have not been successful, mainly because of the need for long duration of activity in flow conditions. Here we report the results of impregnation of urinary catheters with a combination of rifampicin, sparfloxacin and triclosan.

View Article and Find Full Text PDF

Peritonitis, exit site and tunnel infections are serious complications of peritoneal dialysis (CAPD), which may lead to catheter loss, despite measures taken to reduce the infection rate. Catheters coated with antimicrobials have shown only short-term activity. We have developed a process for conferring broad-spectrum, long-duration antimicrobial activity on CAPD catheters while reducing the risk of resistance.

View Article and Find Full Text PDF