Intracranial hypertension and adequacy of brain blood flow are primary concerns following traumatic brain injury. Intracranial pressure (ICP) monitoring is a critical diagnostic tool in neurocritical care. However, all ICP sensors, irrespective of design, are subject to systematic and random measurement inaccuracies that can affect patient care if overlooked or disregarded.
View Article and Find Full Text PDFPurpose: To assess the feasibility of Transcranial Doppler ultrasonography (TCD) neuromonitoring in a general intensive care environment, in the prognosis and outcome prediction of patients who are in coma due to a variety of critical conditions.
Methods: The prospective trial was performed between March 2017 and March 2019 Addenbrooke's Hospital, Cambridge, UK. Forty adult patients who failed to awake appropriately after resuscitation from cardiac arrest or were in coma due to conditions such as meningitis, seizures, sepsis, metabolic encephalopathies, overdose, multiorgan failure or transplant were eligible for inclusion.
The pressure reactivity index (PRx) and the pulse amplitude index (PAx) are invasively determined parameters that are commonly used to describe autoregulation following traumatic brain injury (TBI). Using a transcranial Doppler ultrasound (TCD) technique, it is possible to approximate cerebral arterial blood volume (CaBV) solely from cerebral blood flow velocities, and further, to calculate non-invasive markers of autoregulation. In this brief study, we aimed to investigate whether the estimation of relative CaBV with different models could describe the cerebrovascular reactivity of TBI patients.
View Article and Find Full Text PDFWe compared various descriptors of cerebral hemodynamics in 517 patients with traumatic brain injury (TBI) who had, on average, elevated (>23 mmHg) or normal (<15 mmHg) intracranial pressure (ICP). In a subsample of 193 of those patients, transcranial Doppler ultrasound (TCD) recordings were made. Arterial blood pressure (ABP), cerebral blood flow velocity (CBFV), cerebral autoregulation indices based on TCD (the mean flow index (Mx; the coefficient of correlation between the the cerebral perfusion pressure CPP and flow velocity) and the autoregulation index (ARI)), and the pressure reactivity index (PRx) were compared between groups.
View Article and Find Full Text PDFMany transcranial Doppler ultrasonography devices estimate the mean flow velocity (FVm) by using the traditional formula (FVsystolic + 2 × FVdiastolic)/3 instead of a more accurate formula calculating it as the time integral of the current flow velocities divided by the integration period. We retrospectively analyzed flow velocity and intracranial pressure signals containing plateau waves (transient intracranial hypertension), which were collected from 14 patients with a traumatic brain injury. The differences in FVm and its derivative pulsatility index (PI) calculated with the two different methods were determined.
View Article and Find Full Text PDF: The critical closing pressure (CrCP) defines arterial blood pressure below which cerebral arteries collapse. It represents a clinically relevant parameter for the estimation of cerebrovascular tone. Although there are few methods to assess CrCP, there is no consensus which of them estimates this parameter most accurately.
View Article and Find Full Text PDFBackground: Two transcranial Doppler (TCD) estimators of cerebral arterial blood volume (CaBV) coexist: continuous outflow of arterial blood outside the cranium through a low-pulsatile venous system (continuous flow forward, CFF) and pulsatile outflow through regulating arterioles (pulsatile flow forward, PFF). We calculated non-invasive equivalents of the pressure reactivity index (PRx) and the pulse amplitude index PAx with slow waves of mean CaBV and its pulse amplitude.
Methods: About 273 individual TBI patients were retrospectively reviewed.
Objective: Mathematical modeling of cerebral hemodynamics by descriptive equations can estimate the underlying pulsatile component of cerebral arterial blood volume (CaBV). This way, clinical monitoring of changes in cerebral compartmental compliances becomes possible. Our aim is to validate the most adequate method of CaBV estimation in neurocritical care.
View Article and Find Full Text PDFAim: Increased intracranial pressure (ICP) in hypoxic ischaemic brain injury (HIBI) can cause secondary ischaemic brain injury and culminate in brain death. Invasive ICP monitoring is limited by associated risks in HIBI patients. We sought to evaluate the agreement between invasive ICP measurements and non-invasive estimators of ICP (nICP) in HIBI patients.
View Article and Find Full Text PDFAlthough the beach-chair position (BCP) is widely used during shoulder surgery, it has been reported to associate with a reduction in cerebral blood flow, oxygenation, and risk of brain ischaemia. We assessed cerebral haemodynamics using a multiparameter transcranial Doppler-derived approach in patients undergoing shoulder surgery. 23 anaesthetised patients (propofol (2 mg/kg)) without history of neurologic pathology undergoing elective shoulder surgery were included.
View Article and Find Full Text PDFThe cerebral arterial blood volume changes (∆CBV) during a single cardiac cycle can be estimated using transcranial Doppler ultrasonography (TCD) by assuming pulsatile blood inflow, constant, and pulsatile flow forward from large cerebral arteries to resistive arterioles [continuous flow forward (CFF) and pulsatile flow forward (PFF)]. In this way, two alternative methods of cerebral arterial compliance (C) estimation are possible. Recently, we proposed a TCD-derived index, named the time constant of the cerebral arterial bed (τ), which is a product of C and cerebrovascular resistance and is independent of the diameter of the insonated vessel.
View Article and Find Full Text PDFBackground: Continuous assessment of cerebral compensatory reserve is possible using the moving correlation between pulse amplitude of intra-cranial pressure (AMP) and intra-cranial pressure (ICP), called RAP. Little is known about the behavior and associations of this index in adult traumatic brain injury (TBI). The goal of this study is to evaluate the association between admission cerebral imaging findings and RAP over the course of the acute intensive care unit stay.
View Article and Find Full Text PDFThe purpose of this study was to provide validation of intracranial pressure (ICP) derived continuous indices of cerebrovascular reactivity against the lower limit of autoregulation (LLA). Utilizing an intracranial hypertension model within white New Zealand rabbits, ICP, transcranial Doppler (TCD), laser Doppler flowmetry (LDF), and arterial blood pressure were recorded. Data were retrospectively analyzed in a cohort of 12 rabbits with adequate signals for interrogating the LLA.
View Article and Find Full Text PDFBackground: Intracranial pressure (ICP)- and cerebral perfusion pressure (CPP)-guided therapy is central to neurocritical care for traumatic brain injury (TBI) patients. We sought to identify time-dependent critical thresholds for mortality and unfavourable outcome for ICP and CPP in non-craniectomised TBI patients.
Methods: This is a retrospective cohort study of 355 patients with moderate-to-severe TBI who received ICP monitoring and were managed without decompressive craniectomy in a tertiary hospital neurocritical care unit.
Background: Prior methods evaluating the changes in cerebral arterial blood volume (∆CBV) assumed that brain blood transport distal to big cerebral arteries can be approximated with a non-pulsatile flow (CFF) model. In this study, a modified ∆CBV calculation that accounts for pulsatile blood flow forward (PFF) from large cerebral arteries to resistive arterioles was investigated. The aim was to assess cerebral hemodynamic indices estimated by both CFF and PFF models while changing arterial blood carbon dioxide concentration (EtCO) in healthy volunteers.
View Article and Find Full Text PDFObjective: In nearly 1,000 traumatic brain injury (TBI) patients monitored in the years 1992-2014, we identified 18 vegetative state (VS) cases. Our database provided access to continuous computer-recorded signals, which we used to compare primary signals, intracranial pressure (ICP)-derived indices and demographic data between VS patients, patients who survived but who were not VS (S), and patients who died (D).
Method: Mean values of ICP, arterial blood pressure (ABP) and cerebral perfusion pressure (CPP) from the whole monitoring periods were compared between the different outcome groups.
Impaired cerebrovascular reactivity has been associated with outcome following traumatic brain injury (TBI), but it is unknown how it is affected by trauma severity. Thus, we aimed to explore the relationship between intracranial (IC) and extracranial (EC) injury burden and cerebrovascular reactivity in TBI patients. We retrospectively included critically ill TBI patients.
View Article and Find Full Text PDFA scoping review of the literature was performed systematically on commonly described continuous autoregulation measurement techniques in adult traumatic brain injury (TBI) to provide an overview of methodology and comprehensive reference library of the available literature for each technique. Five separate small systematic reviews were conducted for each of the continuous techniques: pressure reactivity index (PRx), laser Doppler flowmetry (LDF), near infrared spectroscopy (NIRS) techniques, brain tissue oxygen tension (PbtO), and thermal diffusion (TD) techniques. Articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to December 2016), and reference lists of relevant articles were searched.
View Article and Find Full Text PDFThe purpose of this study was to perform a systematic, scoping review of commonly described intermittent/semi-intermittent autoregulation measurement techniques in adult traumatic brain injury (TBI). Nine separate systematic reviews were conducted for each intermittent technique: computed tomographic perfusion (CTP)/Xenon-CT (Xe-CT), positron emission tomography (PET), magnetic resonance imaging (MRI), arteriovenous difference in oxygen (AVDO) technique, thigh cuff deflation technique (TCDT), transient hyperemic response test (THRT), orthostatic hypotension test (OHT), mean flow index (Mx), and transfer function autoregulation index (TF-ARI). MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to December 2016), and reference lists of relevant articles were searched.
View Article and Find Full Text PDFBackground: Determination of relationships between transcranial Doppler (TCD)-based spectral pulsatility index (sPI) and pulse amplitude (AMP) of intracranial pressure (ICP) in 2 groups of severe traumatic brain injury (TBI) patients (a) displaying plateau waves and (b) with unstable mean arterial pressure (MAP).
Methods: We retrospectively reviewed patients with severe TBI and continuous TCD monitoring displaying either plateau waves or unstable MAP from 1992 to 1998. We utilized linear and nonlinear regression techniques to describe both cohorts: cerebral perfusion pressure (CPP) versus AMP, CPP versus sPI, mean ICP versus ICP AMP, mean ICP versus sPI, and AMP versus sPI.
Goal: Critical closing pressure (CrCP) is the arterial blood pressure (ABP) threshold, below which small arterial vessels collapse and cerebral blood flow ceases. Here, we aim to compare three methods for CrCP estimation in scenario of a controlled increase in intracranial pressure (ICP), induced by infusion tests performed in patients with suspected normal pressure hydrocephalus (NPH).
Methods: Computer recordings of directly-measured ICP, ABP, and transcranial Doppler cerebral blood flow velocity (CBFV), from 37 NPH patients undergoing infusion tests, were retrospectively analyzed.
Cerebral autoregulation is conceptualized as a vascular self-regulatory mechanism within the brain. Controlled by elusive relationships between various biophysical processes, it functions to protect the brain against potential damages caused by sudden changes in cerebral perfusion pressures and flow. Following events such as traumatic brain injuries (TBI), autoregulation may be compromised, potentially leading to an unfavorable outcome.
View Article and Find Full Text PDF