Purpose: Effective therapies for metastatic osteosarcoma (OS) remain a critical unmet need. Targeting mRNA translation in metastatic OS offers a promising option, as selective translation drives the synthesis of cytoprotective proteins under harsh microenvironmental conditions to facilitate metastatic competence.
Experimental Design: We assessed the expression levels of eukaryotic translation factors in OS, revealing the high expression of the eukaryotic initiation factor 4A1 (EIF4A1).
Concurrent readout of sequence and base modifications from long unamplified DNA templates by Pacific Biosciences of California (PacBio) single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90-99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility.
View Article and Find Full Text PDFPurpose: Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, multiple models are needed to fully elucidate key aspects of disease biology and to recapitulate clinically relevant phenotypes.
View Article and Find Full Text PDFPediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources.
View Article and Find Full Text PDFModels to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology, especially for highly aggressive cancers with a propensity for metastatic spread. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, a large panel of models is needed to fully elucidate key aspects of disease biology and to recapitulate clinically-relevant phenotypes.
View Article and Find Full Text PDFOsteosarcoma (OS) is an aggressive bone cancer for which survival has not improved over three decades. While biomaterials have been widely used to engineer 3D soft-tissue tumor models, the potential of engineering 3D biomaterials-based OS models for comprehensive interrogation of OS pathology and drug discovery remains untapped. Bone is characterized by high mineral content, yet the role of bone mineral in OS progression and drug response remains unknown.
View Article and Find Full Text PDFFew therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we found that the microRNA (miRNA) cluster including miR181ab1 is a key modulator of KRAS-driven oncogenesis. Ablation of Mir181ab1 in genetically engineered mouse models of Kras-driven lung and pancreatic cancer was deleterious to tumor initiation and progression.
View Article and Find Full Text PDFProinflammatory cytokines in the tumor microenvironment can promote tumor growth, yet their value as therapeutic targets remains underexploited. We validated the functional significance of the cardiotrophin-like cytokine factor 1 (CLCF1)-ciliary neurotrophic factor receptor (CNTFR) signaling axis in lung adenocarcinoma (LUAD) and generated a high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1, thereby inhibiting its oncogenic effects. eCNTFR-Fc inhibits tumor growth in multiple xenograft models and in an autochthonous, highly aggressive genetically engineered mouse model of LUAD, driven by activation of oncogenic Kras and loss of Trp53.
View Article and Find Full Text PDFOsteosarcoma is a highly aggressive cancer for which treatment has remained essentially unchanged for more than 30 years. Osteosarcoma is characterized by widespread and recurrent somatic copy-number alterations (SCNA) and structural rearrangements. In contrast, few recurrent point mutations in protein-coding genes have been identified, suggesting that genes within SCNAs are key oncogenic drivers in this disease.
View Article and Find Full Text PDFKRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer deaths worldwide, with the majority of mortality resulting from metastatic spread. However, the molecular mechanism by which cancer cells acquire the ability to disseminate from primary tumors, seed distant organs, and grow into tissue-destructive metastases remains incompletely understood. We combined tumor barcoding in a mouse model of human lung adenocarcinoma with unbiased genomic approaches to identify a transcriptional program that confers metastatic ability and predicts patient survival.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers and shows resistance to any therapeutic strategy used. Here we tested small-molecule inhibitors targeting chromatin regulators as possible therapeutic agents in PDAC. We show that JQ1, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, suppresses PDAC development in mice by inhibiting both MYC activity and inflammatory signals.
View Article and Find Full Text PDFSustained tumor progression has been attributed to a distinct population of tumor-propagating cells (TPCs). To identify TPCs relevant to lung cancer pathogenesis, we investigated functional heterogeneity in tumor cells isolated from Kras-driven mouse models of non-small-cell lung cancer (NSCLC). CD24(+)ITGB4(+)Notch(hi) cells are capable of propagating tumor growth in both a clonogenic and an orthotopic serial transplantation assay.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAF) have been reported to support tumor progression by a variety of mechanisms. However, their role in the progression of non-small cell lung cancer (NSCLC) remains poorly defined. In addition, the extent to which specific proteins secreted by CAFs contribute directly to tumor growth is unclear.
View Article and Find Full Text PDFKRAS is one of the most frequently mutated human oncogenes. In some settings, oncogenic KRAS can trigger cellular senescence, whereas in others it produces hyperproliferation. Elucidating the mechanisms regulating these 2 drastically distinct outcomes would help identify novel therapeutic approaches in RAS-driven cancers.
View Article and Find Full Text PDFChemotherapy resistance is a major obstacle in cancer treatment, yet the mechanisms of response to specific therapies have been largely unexplored in vivo. Employing genetic, genomic, and imaging approaches, we examined the dynamics of response to a mainstay chemotherapeutic, cisplatin, in multiple mouse models of human non-small-cell lung cancer (NSCLC). We show that lung tumors initially respond to cisplatin by sensing DNA damage, undergoing cell cycle arrest, and inducing apoptosis-leading to a significant reduction in tumor burden.
View Article and Find Full Text PDFMitochondria are essential organelles with central roles in diverse cellular processes such as apoptosis, energy production via oxidative phosphorylation, ion homeostasis, and the synthesis of heme, lipid, amino acids, and iron-sulfur clusters. Defects in the mitochondrial respiratory chain lead to or are associated with a wide variety of diseases in humans. The nematode Caenorhabditis elegans provides a powerful genetic and developmental model system for reproducing deleterious mutations causing mitochondrial dysfunction and investigating their metabolic consequences and their mechanisms of pathology.
View Article and Find Full Text PDFThe NADH:ubiquinone oxidoreductase or complex I of the mitochondrial respiratory chain is an intricate enzyme with a vital role in energy metabolism. Mutations affecting complex I can affect at least three processes; they can impair the oxidation of NADH, reduce the enzyme's ability to pump protons for the generation of a mitochondrial membrane potential and increase the production of damaging reactive oxygen species. We have previously developed a nematode model of complex I-associated mitochondrial dysfunction that features hallmark characteristics of mitochondrial disease, such as lactic acidosis and decreased respiration.
View Article and Find Full Text PDFMitochondrial dysfunction, with an estimated incidence of 1 in 5,000 births, is associated with a wide variety of multisystem degenerative diseases. Among the most prevalent forms of dysfunction are defects in the NADH:ubiquinone oxidoreductase (complex I). Caenorhabditis elegans strains with complex I mutations exhibit characteristic features of human mitochondrial disease including decreased rates of respiration and lactic acidosis.
View Article and Find Full Text PDF