When assessing risks posed by environmental chemical mixtures, whole mixture approaches are preferred to component approaches. When toxicological data on whole mixtures as they occur in the environment are not available, Environmental Protection Agency guidance states that toxicity data from a mixture considered "sufficiently similar" to the environmental mixture can serve as a surrogate. We propose a novel method to examine whether mixtures are sufficiently similar, when exposure data and mixture toxicity study data from at least one representative mixture are available.
View Article and Find Full Text PDFThe Organization for Economic Co-operation and Development (OECD) recommends the measurement of specific plant components for compositional assessments of new biotechnology-derived crops. These components include proximates, nutrients, antinutrients, and certain crop-specific secondary metabolites. A considerable literature on the natural variability of these components in conventional and biotechnology-derived crops now exists.
View Article and Find Full Text PDFUnderstanding natural variation in the composition of conventional crop germplasms is critical in establishing a baseline for comparison of biotechnology-derived crops. This is particularly relevant to such traits as tolerance to drought stress. Thus, there is both a need to understand the contribution of stress conditions to natural variation in plant nutritional components and to determine whether levels of small molecule metabolites such as osmoprotectants and stress metabolites are also affected.
View Article and Find Full Text PDFSeveral assumptions, defined and undefined, are used in the toxicity assessment of chemical mixtures. In scientific practice mixture components in the low-dose region, particularly subthreshold doses, are often assumed to behave additively (i.e.
View Article and Find Full Text PDF