Publications by authors named "Leann Mikesh"

Following initial transformation, tumorigenesis, growth, invasion, and metastasis involves a complex interaction between the transformed tissue and the host, particularly in the microenvironment adjacent to the developing tumor. The tumor microenvironment itself is a unique outcome of the host reacting to the tumor and perhaps the tumor reacting to the host and in turn the tumor altering the host's response to give rise to an environment that ultimately promotes tumor progression. The tumor-adjacent stromal, sometimes referred to as "reactive stromal" or the desmoplastic stroma, has received some investigative studies, but it is incomplete, and likely different tumors promote a varied response and hence different reactive stroma.

View Article and Find Full Text PDF

Unlabelled: The extracellular matrix is composed of a variety of proteins which are essential for growth, wound healing, and fibrosis. It provides both structural support as well as contributing to the regulation of the local microenvironment. To further characterize the molecular composition of human skin we have undertaken a proteomic approach to identify proteins in three skin regions from two locations.

View Article and Find Full Text PDF

The epithelial to mesenchymal transition is a developmental process allowing epithelial cells to dedifferentiate into cells displaying mesenchymal phenotypes. The pathological role of epithelial to mesenchymal transition has been implicated in invasion and metastasis for numerous carcinomas, yet limited data exist addressing whether mesenchymal transition (MT) occurs in malignant melanoma cells. Our group developed an in-vitro three-dimensional culture system to address MT in melanoma cells upon transforming growth factor-β/ tumor necrosis factor-α treatment.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic beta cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk.

View Article and Find Full Text PDF

Mass spectrometry has played an integral role in the identification of proteins and their post-translational modifications (PTM). However, analysis of some PTMs, such as phosphorylation, sulfonation, and glycosylation, is difficult with collision-activated dissociation (CAD) since the modification is labile and preferentially lost over peptide backbone fragmentation, resulting in little to no peptide sequence information. The presence of multiple basic residues also makes peptides exceptionally difficult to sequence by conventional CAD mass spectrometry.

View Article and Find Full Text PDF

Alterations in phosphorylation of cellular proteins are a hallmark of malignant transformation. Degradation of these phosphoproteins could generate cancer-specific class I MHC-associated phosphopeptides recognizable by CD8+ T lymphocytes. In a comparative analysis of phosphopeptides presented on the surface of melanoma, ovarian carcinoma, and B lymphoblastoid cells, we find 5 of 36 that are restricted to the solid tumors and common to both cancers.

View Article and Find Full Text PDF