The objectives of the present study were to estimate the heritability for daily methane emission (CH4) and residual daily methane emission (CH4res) in Nellore cattle, as well as to perform genome-wide association studies (GWAS) to identify genomic regions and candidate genes influencing the genetic variation of CH4 and CH4res. Methane emission phenotypes of 743 Nellore animals belonging to 3 breeding programs were evaluated. CH4 was measured using the sulfur hexafluoride (SF6) tracer technique (which involves an SF6 permeation tube introduced into the rumen, and an appropriate apparatus on each animal), and CH4res was obtained as the difference between observed CH4 and CH4 adjusted for dry matter intake.
View Article and Find Full Text PDFEnteric methane (CH4) emissions are a natural process in ruminants and can result in up to 12% of energy losses. Hence, decreasing enteric CH4 production constitutes an important step towards improving the feed efficiency of Brazilian cattle herds. The aim of this study was to evaluate the relationship between performance, residual feed intake (RFI), and enteric CH4 emission in growing Nellore cattle (Bos indicus).
View Article and Find Full Text PDFThis study aimed to estimate genetic parameters, including genomic data, for feeding behavior, feed efficiency, and growth traits in Nellore cattle. The following feeding behavior traits were studied (861 animals with records): time spent at the feed bunk (TF), duration of one feeding event (FD), frequency of visits to the bunk (FF), feeding rate (FR), and dry matter intake (DMI) per visit (DMIv). The feed efficiency traits (1,543 animals with records) included residual feed intake (RFI), residual weight gain (RWG), and feed conversion (FC).
View Article and Find Full Text PDFThe aim of this study was to determine the shortest test duration necessary for the evaluation of feed efficiency traits, i.e., dry matter intake (DMI), average daily gain (ADG), mid-test metabolic body weight, residual feed intake (RFI), feed conversion ratio (DMI/ADG), and feed conversion efficiency (ADG/DMI).
View Article and Find Full Text PDF