Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments.
View Article and Find Full Text PDFThe measurement of fitness in wild populations is a challenging task, and a number of proxies have been proposed with different degrees of success. Developmental instability/stability (DI) is an organismal property associated with variance in bilateral asymmetry (fluctuating asymmetry-FA) and a correlated effect on fitness. This study provides evidence to corroborate the hypothesis that asymmetry partly reflects DI and is correlated with a reduction in fitness measured by survival and reproduction in bats.
View Article and Find Full Text PDFThe aim of this study was to analyse the morphology and allometry of larvae belonging to five potamodromous species. Five breeding species belonging to the order Characiformes [Salminus brasiliensis (Cuvier, 1816), Leporinus steindachneri, Eigenmann, 1907, Prochilodus lineatus (Valenciennes, 1837), Prochilodus vimboides (Kner,1859) and Brycon insignis, Steindachner, 1877] were used to obtain larvae samples during the pre-flexing, post-flexing, and juvenile developmental stages. When we observed the degree-hour (DH) amplitude time values, we found three developmental groups based on allometry and morphometrics within the period between the pre-flexing and post-flexing phases.
View Article and Find Full Text PDFEvolutionary radiations on continents are less well-understood and appreciated than those occurring on islands. The extent of ecological influence on species divergence can be evaluated to determine whether a radiation was ultimately the outcome of divergent natural selection or else arose mainly by nonecological divergence. Here, we used phylogenetic comparative methods to test distinct hypotheses corresponding to adaptive and nonadaptive evolutionary scenarios for the morphological evolution of sigmodontine rodents.
View Article and Find Full Text PDFThe objective of this study was to characterize the early development and allometric growth of the grumatã (Prochilodus vimboides). We describe a sample of 266 eggs and larvae obtained through induced spawning. The eggs were spherical (mean 3.
View Article and Find Full Text PDFPlanta
August 2014
Multiplicity of protease inhibitors induced by predators may increase the understanding of a plant's intelligent behavior toward environmental challenges. Information about defense mechanisms of non-genomic model plant passion fruit (Passiflora edulis Sims) in response to predator attack is still limited. Here, via biochemical approaches, we showed its flexibility to build-up a broad repertoire of potent Kunitz-type trypsin inhibitors (KTIs) in response to methyl jasmonate.
View Article and Find Full Text PDFStudies of evolutionary divergence using quantitative genetic methods are centered on the additive genetic variance-covariance matrix (G) of correlated traits. However, estimating G properly requires large samples and complicated experimental designs. Multivariate tests for neutral evolution commonly replace average G by the pooled phenotypic within-group variance-covariance matrix (W) for evolutionary inferences, but this approach has been criticized due to the lack of exact proportionality between genetic and phenotypic matrices.
View Article and Find Full Text PDFBackground: The phyllostomid bats present the most extensive ecological and phenotypic radiation known among mammal families. This group is an important model system for studies of cranial ecomorphology and functional optimisation because of the constraints imposed by the requirements of flight. A number of studies supporting phyllostomid adaptation have focused on qualitative descriptions or correlating functional variables and diet, but explicit tests of possible evolutionary mechanisms and scenarios for phenotypic diversification have not been performed.
View Article and Find Full Text PDFGeometric morphometrics is helpful for understanding how body size and body shape influence the strength of inter-specific competitive interactions in a community. Dung beetles, characterized by their use of decomposing organic material, provide a useful model for understanding the structuring of ecological communities and the role of competition based on their size and morphology. The relationship between body size and shape in a dung beetle community from the Atlantic Forest in Serra do Japi, Brazil was analyzed for 39 species.
View Article and Find Full Text PDFThe evolutionary integration of complex morphological structures is a macroevolutionary pattern in which morphogenetic components evolve in a coordinated fashion, which can result from the interplay among processes of developmental, genetic integration, and different types of selection. We tested hypotheses of ecological versus developmental factors underlying patterns of within-species and evolutionary integration in the mandible of phyllostomid bats, during the most impressive ecological and morphological radiation among mammals. Shape variation of mandibular morphogenetic components was associated with diet, and the transition of integration patterns from developmental to within-species to evolutionary was examined.
View Article and Find Full Text PDFThe causes of craniofacial variation among human populations have been the subject of controversy. In this work, we studied aboriginal populations from southern South America, the last continental region peopled by humans and with a wide range of ecological conditions. Because of these characteristics, southern South America provides a unique opportunity to study the relative importance of random and nonrandom factors in human diversification.
View Article and Find Full Text PDFThe rodent mandible has become a paradigm for studies on the development and evolution of complex morphological structures. We use a combination of geometric and multivariate morphometric methods in order to assess the correspondence between integration patterns and a priori biological models in the context of evolutionary shape divergence in the mandible of rodents of the family Echimyidae. The correlation of shape distances among operational taxonomic units (individuals, species, genera) in separate morphogenetic components allowed the construction of integration matrices among mandible components for data sets corresponding to varying levels of genetic divergence (intergeneric, interspecific, and intrapopulational).
View Article and Find Full Text PDFThe recently developed geometric morphometrics methods represent an important contribution of statistics and geometry to the study of biological shapes. We propose simple protocols using shape distances that incorporate geometric techniques into linear quantitative genetic models that should provide insights into the contribution of genetics to shape variation in organisms. The geometric approaches use Procrustes distances in a curved shape space and distances in tangent spaces within and among families to estimate shape heritability.
View Article and Find Full Text PDF