Publications by authors named "Leandro O Bortot"

Due to its severe burden and geographic distribution, Chagas disease (CD) has a significant social and economic impact on low-income countries. Benznidazole and nifurtimox are currently the only drugs available for CD. These are prodrugs activated by reducing the nitro group, a reaction catalyzed by nitroreductase type I enzyme from Trypanosoma cruzi (TcNTR), with no homolog in the human host.

View Article and Find Full Text PDF

Background: Biomolecular interactions that modulate biological processes occur mainly in cavities throughout the surface of biomolecular structures. In the data science era, structural biology has benefited from the increasing availability of biostructural data due to advances in structural determination and computational methods. In this scenario, data-intensive cavity analysis demands efficient scripting routines built on easily manipulated data structures.

View Article and Find Full Text PDF

Prion disease is caused by the misfolding of the cellular prion protein, PrP, into a self-templating conformer, PrP. Nuclear magnetic resonance (NMR) and X-ray crystallography revealed the 3D structure of the globular domain of PrP and the possibility of its dimerization via an interchain disulfide bridge that forms due to domain swap or by non-covalent association of two monomers. On the contrary, PrP is composed by a complex and heterogeneous ensemble of poorly defined conformations and quaternary arrangements that are related to different patterns of neurotoxicity.

View Article and Find Full Text PDF

The recently introduced microphysiological systems (MPS) cultivating human organoids are expected to perform better than animals in the preclinical tests phase of drug developing process because they are genetically human and recapitulate the interplay among tissues. In this study, the human intestinal barrier (emulated by a co-culture of Caco-2 and HT-29 cells) and the liver equivalent (emulated by spheroids made of differentiated HepaRG cells and human hepatic stellate cells) were integrated into a two-organ chip (2-OC) microfluidic device to assess some acetaminophen (APAP) pharmacokinetic (PK) and toxicological properties. The MPS had three assemblies: Intestine only 2-OC, Liver only 2-OC, and Intestine/Liver 2-OC with the same media perfusing both organoids.

View Article and Find Full Text PDF

The synthesis of MUC1 glycopeptides bearing modified tumor-associated carbohydrate antigens (TACAs) represents an effective strategy to develop potential antitumor vaccines that trigger strong immune response. In this context, we present herein the multistep synthesis of the triazole glycosyl amino acid Neu5Ac-α/β2-triazole-6-βGalNAc-ThrOH 1 as STn antigen analog, along with its assembly on the corresponding MUC1 peptide to give NAcProAsp [Neu5Acα/β2-triazole-6-βGalNAc]ThrArgProGlyOH 2. Despite interacting differently with SM3 monoclonal antibody, as shown by molecular dynamic simulations, this unnatural triazole glycopeptide may represent a promising candidate for cancer immunotherapy.

View Article and Find Full Text PDF

The Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. The ZIKV infection is usually asymptomatic or is associated with mild clinical manifestations; however, increased numbers of cases of microcephaly and birth defects have been recently reported. To date, neither a vaccine nor an antiviral treatment has become available to control ZIKV replication.

View Article and Find Full Text PDF

α-Dystroglycan (α-DG) mucins are essential for maintenance of the structural and functional stability of the muscle fiber and, when hypoglycosylated, they are directly involved in pathological processes such as dystroglycanopathies. Thus, this work reports the synthesis of the novel 1,2,3-triazole-derived glycosyl amino acids αGlcNAc-1-O-triazol-2Manα-ThrOH (1) and Gal-β1,4-αGlcNAc-1-O-triazol-2Manα-ThrOH (2), followed by solid-phase assembly to get the corresponding glycopeptides NHAcThrVal[αGlcNAc-1-triazol-2Manα]ThrIleArgGlyOH (3) and NHAcThrVal[Gal-β1,4-αGlcNAc-1-triazol-2Manα]ThrIleArgGlyOH (4) as analogs of α-DG mucins. The glycosyl amino acids 1 (72%) and 2 (35%) were synthesized by Cu(I)-assisted 1,3-dipolar azide-alkyne cycloaddition reactions (CuAAC) between the azide-glycosyl amino acid αManN-FmocThrOBn (5) and the corresponding alkyne-functionalyzed sugars 2'-propynyl-αGlcNAc (6) and 2'-propynyl-Gal-β1,4-αGlcNAc (7), followed by hydrogenation reactions.

View Article and Find Full Text PDF

Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP.

View Article and Find Full Text PDF

In this study, we report the ability of a set of eight 3-phenylcoumarin derivatives bearing 6,7- or 5,7-dihydroxyl groups, free or acetylated, bound to the benzopyrone moiety, to modulate the effector functions of human neutrophils. In general, (i) 6,7-disubstituted compounds (5, 6, 19, 20) downmodulated the Fcγ receptor-mediated neutrophil oxidative metabolism more strongly than 5,7-disubstituted compounds (21, 22, 23, 24), and (ii) hydroxylated compounds (5, 19, 21, 23) downmodulated this neutrophil function more effectively than their acetylated counterparts (6, 20, 22, 24, respectively). Compounds 5 (6,7-dihydroxy-3-[3',4'-methylenedioxyphenyl]-coumarin) and 19 (6,7-dihydroxy-3-[3',4'-dihydroxyphenyl]-coumarin) effectively downmodulated the neutrophil oxidative metabolism elicited via Fcγ and/or complement receptors.

View Article and Find Full Text PDF

Biological membranes are continuously remodeled in the cell by specific membrane-shaping machineries to form, for example, tubes and vesicles. We examine fundamental mechanisms involved in the vesiculation processes induced by a cluster of envelope (E) and membrane (M) proteins of the dengue virus (DENV) using molecular dynamics simulations and a coarse-grained model. We show that an arrangement of three E-M heterotetramers (EM) works as a bending unit and an ordered cluster of five such units generates a closed vesicle, reminiscent of the virus budding process.

View Article and Find Full Text PDF

Objectives: To examine whether the hydroalcoholic extract from Baccharis dracunculifolia leaves (BdE) modulates the human neutrophil oxidative metabolism, degranulation, phagocytosis and microbial killing capacity.

Methods: In-vitro assays based on chemiluminescence, spectrophotometry, flow cytometry and polarimetry were used, as well as docking calculations.

Key Findings: At concentrations that effectively suppressed the neutrophil oxidative metabolism elicited by soluble and particulate stimuli (<10 μg/ml), without clear signs of cytotoxicity, BdE (1) inhibited NADPH oxidase and myeloperoxidase activity; (2) scavenged H O and HOCl; (3) weakly inhibited phagocytosis; and (4) did not affect neutrophil degranulation and microbial killing capacity, the expression levels of TLR2, TLR4, FcγRIIa, FcγRIIIb and CR3 and the activity of elastase and lysozyme.

View Article and Find Full Text PDF

This work describes the synthesis of the 1,2,3-triazole amino acid-derived-3-O-galactosides 1-6 and the 1,2,3-triazole di-lactose-derived glycoconjugate 7 as potential galectin-3 inhibitors. The target compounds were synthesized by Cu(I)-catalyzed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-derived amino acids N3-ThrOBn, N3-PheOBn, N3-N-Boc-TrpOBn, N3-N-Boc-LysOBn, N3-O-tBu-AspOBn and N3-l-TyrOH, and the corresponding alkyne-based sugar 3-O-propynyl-GalOMe, as well as by click chemistry reaction between the azido-lactose and 2-propynyl lactose. Surface plasmon resonance (SPR) assays showed that all synthetic glycoconjugates 1-7 bound to galectin-3 with high affinity, but the highest binders were the amino acids-derived glycoconjugates 2 (KD 7.

View Article and Find Full Text PDF

Changes in the concentration of different ions modulate several cellular processes, such as Ca(2+) and Zn(2+) in inflammation. Upon activation of immune system effector cells, the intracellular Ca(2+) concentration rises propagating the activation signal, leading to degranulation and generation of reactive oxygen species, which increases the Zn(2+) intracellular concentration as a consequence of the cellular antioxidant machinery. In this context, S100A12 is of special interest because it is a pro-inflammatory protein expressed in neutrophils whose structure and function are modulated by both Ca(2+) and Zn(2+).

View Article and Find Full Text PDF

The protein structure prediction problem continues to elude scientists. Despite the introduction of many methods, only modest gains were made over the last decade for certain classes of prediction targets. To address this challenge, a social-media based worldwide collaborative effort, named WeFold, was undertaken by 13 labs.

View Article and Find Full Text PDF