Publications by authors named "Leandro Melendez"

Comprehending symbiont abundance among host species is a major ecological endeavour, and the metabolic theory of ecology has been proposed to understand what constrains symbiont populations. We parameterized metabolic theory equations to investigate how bird species' body size and the body size of their feather mites relate to mite abundance according to four potential energy (uropygial gland size) and space constraints (wing area, total length of barbs and number of feather barbs). Predictions were compared with the empirical scaling of feather mite abundance across 106 passerine bird species (26,604 individual birds sampled), using phylogenetic modelling and quantile regression.

View Article and Find Full Text PDF

Ecosystem functioning depends on nutrient cycles and their responses to abiotic and biotic determinants, with the influence of evolutionary legacies being generally overlooked in ecosystem ecology. Along a broad elevation gradient characterized by shifting climatic and grazing environments, we addressed clines of plant N and C∶N content and of δ(13)C and δ(15)N in producers (herbs) and in primary (grasshoppers) and secondary (birds) consumers, both within and between species in phylogenetically controlled scenarios. We found parallel and significant intra- and interspecific trends of isotopic variation with elevation in the three groups.

View Article and Find Full Text PDF

Understanding why host species differ so much in symbiont loads and how this depends on ecological host and symbiont traits is a major issue in the ecology of symbiosis. A first step in this inquiry is to know whether observed differences among host species are species-specific traits or more related with host-symbiont environmental conditions. Here we analysed the repeatability (R) of the intensity and the prevalence of feather mites to partition within- and among-host species variance components.

View Article and Find Full Text PDF

Gradients of environmental stress may affect biotic interactions in unpredictable ways responding to climate variation, depending on the abiotic stress tolerance of interacting partners. Here, we study the effect of local climate on the intensity of feather mites in six mountain passerines along a 1400 m elevational gradient characterized by shifting temperature and rainfall. Although obligatory symbionts of warm-blooded organisms are assumed to live in mild and homeothermic environments, those inhabiting external, non-blood-irrigated body portions of the host organism, such as feather mites, are expected to endure exposure to the direct influence of a fluctuating climate.

View Article and Find Full Text PDF