Publications by authors named "Leandro Juan-Llacer"

In recent years, communication systems, including RFID, have been used in intelligent beehives for beekeeping. RFID systems in the UHF frequency band offer reading distances of tens of centimetres, allowing the localisation and identification of the queen bee inside the hive. With this purpose, this work proposes an analysis of an environment of propagation that consists of a honeycomb frame, where the reader is placed within the frame, and the tag is placed in different positions over it.

View Article and Find Full Text PDF

We present a new method for the calculation of the multiple acoustic diffraction caused by the presence of a wide barrier. Our solution decomposes the initial scenario into an equivalent sum of geometries that only consider knife-edges. Then, by applying Babinet's principle, the total acoustic field that reaches the receiving point, which can be located at an arbitrary position, can be calculated via the uniform theory of diffraction.

View Article and Find Full Text PDF

In this work, we present power and quality measurements of four transmissions using different emission technologies in an indoor environment, specifically a corridor, at the frequency of 868 MHz under two non-line-of-sight (NLOS) conditions. A narrowband (NB) continuous wave (CW) signal has been transmitted, and its received power has been measured with a spectrum analyzer, LoRa and Zigbee signals have also been transmitted, and their Received Signal Strength Indicator (RSSI) and bit error rate (BER) have been measured using the transceivers themselves; finally, a 20 MHz bandwidth 5G QPSK signal has also been transmitted and their quality parameters, such as SS-RSRP, SS-RSRQ and SS-RINR, have been measured using a SA. Thereafter, two fitting models, the Close-in (CI) model and the Floating-Intercept (FI) model, were used to analyze the path loss.

View Article and Find Full Text PDF

A formulation based on the uniform theory of diffraction (UTD) for the analysis of the multiple-diffraction of a spherical sound wave caused by a series of wedges or knife-edges is hereby presented. The receiver location has to be considered at the same height as the preceding obstacles and at the same inter-obstacle distance from the last wedge. The solution, which is based on a UTD-physical optics formulation for radio-wave multiple-diffraction and has been validated through comparison with a geometrical theory of diffraction acoustic model, is computationally more efficient than other existing methods thanks to the fact that only single diffractions are involved in the calculations (high-order diffraction terms are not considered in the diffraction coefficients), thus allowing for the consideration of a great number of obstacles.

View Article and Find Full Text PDF