Publications by authors named "Leandro H Andrade"

Urease is an enzyme containing a dinuclear nickel active center responsible for the hydrolysis of urea into carbon dioxide and ammonia. Interestingly, inorganic models of urease are unable to mimic its mechanism despite their similarities to the enzyme active site. The reason behind the discrepancy in urea decomposition mechanisms between inorganic models and urease is still unknown.

View Article and Find Full Text PDF

Novel functionalized indolines were synthesized from 2-(((N-aryl)amino)methyl)acrylates and formamides under ultrasonic irradiation for the first time. Aiming to develop a straightforward and easy-to-implement methodology for the synthesis of indolines, an instrumentation setup was designed, including ultrasound (US) equipment (Ultrasonic Horn; tip diameter of 12.7 mm, 20 kHz, maximum power of 400 W), an open reaction flask, and an inexpensive and green catalyst (1 mol%; FeSO·7HO; CAS: 7782-63-0) without the need for anhydrous conditions.

View Article and Find Full Text PDF

An ultrafast (10 s) methodology to construct novel highly functionalized 2-quinolinones from -(o-ethynylaryl)acrylamides (1,7-enynes) is described for the first time. Microwave irradiation enabled the ultrafast synthesis of 2-quinolinone-fused γ-lactones from Fenton's reagents in formamide. After six key consecutive reactions, including a diastereoselective step, 2-quinolinone-fused γ-lactones were obtained in good overall yield (up to 46%; 10 s).

View Article and Find Full Text PDF

Biocatalysts represent an efficient, highly selective and greener alternative to metal catalysts in both industry and academia. In the last two decades, the interest in biocatalytic transformations has increased due to an urgent need for more sustainable industrial processes that comply with the principles of green chemistry. Thanks to the recent advances in biotechnologies, protein engineering and the Nobel prize awarded concept of direct enzymatic evolution, the synthetic enzymatic toolbox has expanded significantly.

View Article and Find Full Text PDF

Coixspirolactams, spiro[oxindole-γ-lactones], are found in adlay seeds and exhibit anticancer activity. A novel synthetic methodology was developed to enable an easy access to (±)-coixspirolactam A and a large number of new coixspirolactams in excellent overall yields. The exquisite exploitation of formamide reactivity was essential for the construction of oxindole and lactone scaffolds.

View Article and Find Full Text PDF

Enzymatic catalysis is a sustainable alternative for cost-prohibitive catalysts based on noble metals and rare earths. Enzymes can catalyze selective reactions under mild conditions. Enzyme recovery after a reaction for its reuse is still a challenge for industrial application.

View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) have been widely employed in catalysis. Here, we report on the synthesis and catalytic evaluation of a hybrid material composed of Au NPs deposited at the surface of magnetic cobalt ferrite (CoFeO). Our reported approach enabled the synthesis of well-defined Au/CoFeO NPs.

View Article and Find Full Text PDF

Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis.

View Article and Find Full Text PDF

A novel electroactive macromonomer based on poly(l-lactic acid) (PLLA) with (3,4-ethylenedioxythiophene) (EDOT) functional end groups, was prepared by a traditional approach of organometallic polymerization with stannous octanoate [Sn(oct)] and enzymatic polymerization using immobilized Candida antarctica Lipase B (CAL-B) and Amano lipase Pseudomonas cepacia(PS-IM), as catalysts. In the synthetic strategy, (2,3-dihydrothieno[3,4-b] dioxin-2-yl)methanol (EDOT-OH) was used to initiate the ring opening polymerization of lactide to yield PLLA with EDOT end group. All macromonomers (EDOT-PLLA) were characterized by H and C RMN, MALDI-TOF, GPC and EDX.

View Article and Find Full Text PDF

Here, we report the 4.12-Mb draft genome sequence of sp. strain 7749, isolated from marine sediment samples of the Antarctic Peninsula, using enriched medium with ()-1-(4-phenyl)-ethanol as a carbon source.

View Article and Find Full Text PDF

The conversion of carbon dioxide into important industrial feedstock is a subject of growing interest in modern society. A possible way to achieve this goal is by carrying out the CO2/methanol cascade reaction, allowing the recycle of CO2 using either chemical catalysts or enzymes. Efficient and selective reactions can be performed by enzymes; however, due to their low stability, immobilization protocols are required to improve their performance.

View Article and Find Full Text PDF

A novel and highly efficient synthetic approach to pyrroloindolines has been developed. The process is based on tandem radical addition/cyclization with inexpensive iron catalyst. This method tolerates a wide range of N-methyl-N-arylacrylamides as well carbamoyl radicals, providing access to a variety of functionalized 3,3-disubstituted oxindoles, key intermediates for many bioactive pyrroloindolines such as (±)-esermethole, (±)-deoxyeseroline, and (±)-physovenol methyl ether.

View Article and Find Full Text PDF

Nanorattles, comprised of a nanosphere inside a nanoshell, were employed as the next generation of plasmonic catalysts for oxidations promoted by activated O2 . After investigating how the presence of a nanosphere inside a nanoshell affected the electric-field enhancements in the nanorattle relative to a nanoshell and a nanosphere, the SPR-mediated oxidation of p-aminothiophenol (PATP) functionalized at their surface was investigated to benchmark how these different electric-field intensities affected the performances of Au@AgAu nanorattles, AgAu nanoshells and Au nanoparticles having similar sizes. The high performance of the nanorattles enabled the visible-light driven synthesis of azobenzene from aniline under ambient conditions.

View Article and Find Full Text PDF

Alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae was covalently attached, via glutaraldehyde, to magnetite nanoparticles (MagNP) previously coated with aminopropyltriethoxysilane (MagNP/APTS), or with a silica shell followed by the APTS coating (MagNP@SiO2/APTS). In both cases, a great improvement of enzymatic activity has been observed for the ethanol-acetaldehyde conversion. The MagNP@SiO2/APTS-ADH system exhibited the best stability with respect to pH and temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Chiral compounds are crucial in technology and life sciences, acting as building blocks for complex molecules.
  • Nature utilizes enzymes for stereoselectivity, but using whole cells as biocatalysts can be more efficient and cost-effective than pure enzymes.
  • Cell immobilization enhances enzyme stability and lifespan, allowing for repeated use in producing various chiral compounds like alcohols and amines.
View Article and Find Full Text PDF

The hypervalent selenium- and tellurium-containing compounds (halo-organoselenuranes and halo-organotelluranes) were treated with amino acids to evaluate their reactivity and chemoselectivity by (1)H, (13)C, (77)Se and (125)Te NMR spectroscopy. The study of forced thermal stability was performed and analyzed by NMR. The organotelluranes remained stable at temperatures around 60 °C but in the case of organoselenuranes, there was formation of new products at 37 °C as a result of halogen loss.

View Article and Find Full Text PDF

Freshwater contamination usually comes from runoff water or direct wastewater discharges to the environment. This paper presents a case study which reveals the impact of these types of contamination on the sediment bacterial population. A small stretch of Lerma River Basin, heavily impacted by industrial activities and urban wastewater release, was studied.

View Article and Find Full Text PDF

E. coli cells containing overexpressed (R)-selective ω-transaminase and the cofactor PLP were immobilized on methacrylate beads suitable for continuous flow applications. The use of an organic solvent suppresses leaching of PLP from the cells; no additional cofactor was required after setting up the packed-bed reactor containing the biocatalyst (ω-TA-PLP).

View Article and Find Full Text PDF

A series of hypervalent selenium- and tellurium-containing compounds (organoselenuranes and organotelluranes) was evaluated aiming novel inhibitors of a threonine protease, namely the 20S proteasome (20S PT). In vitro assays demonstrated high inhibitory potency and specificity of these compounds toward the β2 catalytic site of the 20S PT. Organotelluranes were identified as more potent inhibitors than organoselenuranes since their IC50 ranged from 3.

View Article and Find Full Text PDF

We employed thiol-funcionalized AgAu nanoshells (AgAu NSs) as supports for the covalent attachment of lipases (BCL, Burkholderia cepacia lipase; PPL, pancreatic porcine lipase). Specifically, we were interested in investigating the effect of the nature/size of the spacer in AgAu NSs-functionalized organic thiols over the covalent attachment of lipases. The catalytic performance of AgAu-lipase systems was measured in the kinetic resolution of (R,S)-1-(phenyl)ethanol via a transesterification reaction.

View Article and Find Full Text PDF

Lipase-catalyzed kinetic resolution of aryltrimethylsilyl chiral alcohols through a transesterification reaction was studied. The optimal conditions found for the kinetic resolution of m- and p-aryltrimethylsilyl chiral alcohols, led to excellent results, high conversions (c = 50%), high enantiomeric ratios (E > 200) and enantiomeric excesses for the remaining (S)-alcohol and (R)-acetylated product (>99%). However, kinetic resolution of o-aryltrimethylsilyl chiral alcohols did not occur under the same conditions applied to the other isomers.

View Article and Find Full Text PDF

The enzymatic kinetic resolution of tert-butyl 2-(1-hydroxyethyl) phenylcarbamate via lipase-catalyzed transesterification reaction was studied. We investigated several reaction conditions and the carbamate was resolved by Candida antarctica lipase B (CAL-B), leading to the optically pure (R)- and (S)-enantiomers. The enzymatic process showed excellent enantioselectivity (E > 200).

View Article and Find Full Text PDF

Several microorganisms were isolated from soil/sediment samples of Antarctic Peninsula. The enrichment technique using (RS)-1-(phenyl)ethanol as a carbon source allowed us to isolate 232 psychrophile/psychrotroph microorganisms. We also evaluated the enzyme activity (oxidoreductases) for enantioselective oxidation reactions, by using derivatives of (RS)-1-(phenyl)ethanol as substrates.

View Article and Find Full Text PDF

A new series of organotelluranes were synthesized and investigated, and the structure-activity relationships in cysteine proteases inhibition were determined. It was possible to identify the relevance of structural components linked to the reactivity of these compounds as inhibitors. For example, dibromo-organotelluranes showed to be more reactive than dichloro-organotelluranes towards cysteine cathepsins V and S.

View Article and Find Full Text PDF

A series of organochalcogenanes was synthesized and evaluated as protein tyrosine phosphatases (PTPs) inhibitors. The results indicate that organochalcogenanes inactivate the PTPs in a time- and concentration-dependent fashion, most likely through covalent modification of the active site sulfur-moiety by the chalcogen atom. Consequently, organochalcogenanes represent a new class of mechanism-based probes to modulate the PTP-mediated cellular processes.

View Article and Find Full Text PDF