Annu Int Conf IEEE Eng Med Biol Soc
November 2021
Continuous and non-invasive cardiovascular monitoring has gained attention due to the miniaturization of wearable devices. Particularly, wrist-worn photoplethysmography (PPG) sensors present an alternative to electrocardiogram recording for heart rate (HR) monitoring as it is cheaper and non-intrusive for daily activities. Yet, the accuracy of PPG measurements is heavily affected by motion artifacts which are inherent to ambulatory environments.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
August 2020
Research on heart rate (HR) estimation using wrist-worn photoplethysmography (PPG) sensors have progressed rapidly owing to the prominence of commercial sensing modules, used widely for lifestyle monitoring. Reported methodologies have been fairly successful in mitigating the effect of motion artifacts (MA) in ambulatory environment for HR estimation. Recently, a learning framework, CorNET, employing two-layer convolution neural networks (CNN) and two-layer long short-term network (LSTM) was successfully reported for estimating HR from MA-induced PPG signals.
View Article and Find Full Text PDF