Wnt proteins are hydrophobic glycoproteins that are nevertheless capable of long-range signaling. We found that Wnt7a is secreted long distance on the surface of extracellular vesicles (EVs) following muscle injury. We defined a signal peptide region in Wnts required for secretion on EVs, termed exosome-binding peptide (EBP).
View Article and Find Full Text PDFAccording to the Principle of Minimal Frustration, folded proteins can only have a minimal number of strong energetic conflicts in their native states. However, not all interactions are energetically optimized for folding but some remain in energetic conflict, i.e.
View Article and Find Full Text PDFWnt proteins are secreted hydrophobic glycoproteins that act over long distances through poorly understood mechanisms. We discovered that Wnt7a is secreted on extracellular vesicles (EVs) following muscle injury. Structural analysis identified the motif responsible for Wnt7a secretion on EVs that we term the Exosome Binding Peptide (EBP).
View Article and Find Full Text PDFBackground: Codon usage and nucleotide composition of coding sequences have profound effects on protein expression. However, while it is recognized that different tissues have distinct tRNA profiles and codon usages in their transcriptomes, the effect of tissue-specific codon optimality on protein synthesis remains elusive.
Results: We leverage existing state-of-the-art transcriptomics and proteomics datasets from the GTEx project and the Human Protein Atlas to compute the protein-to-mRNA ratios of 36 human tissues.
Summary: Recent years have seen an increase in the number of structures available, not only for new proteins but also for the same protein crystallized with different molecules and proteins. While protein design software has proven to be successful in designing and modifying proteins, they can also be overly sensitive to small conformational differences between structures of the same protein. To cope with this, we introduce here pyFoldX, a python library that allows the integrative analysis of structures of the same protein using FoldX, an established forcefield and modelling software.
View Article and Find Full Text PDFSummary: Once folded, natural protein molecules have few energetic conflicts within their polypeptide chains. Many protein structures do however contain regions where energetic conflicts remain after folding, i.e.
View Article and Find Full Text PDFSummary: Accurate 3D modelling of protein-protein interactions (PPI) is essential to compensate for the absence of experimentally determined complex structures. Here, we present a new set of commands within the ModelX toolsuite capable of generating atomic-level protein complexes suitable for interface design. Among these commands, the new tool ProteinFishing proposes known and/or putative alternative 3D PPI for a given protein complex.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2019
RNA-protein interactions are crucial for such key biological processes as regulation of transcription, splicing, translation, and gene silencing, among many others. Knowing where an RNA molecule interacts with a target protein and/or engineering an RNA molecule to specifically bind to a protein could allow for rational interference with these cellular processes and the design of novel therapies. Here we present a robust RNA-protein fragment pair-based method, termed RnaX, to predict RNA-binding sites.
View Article and Find Full Text PDFSummary: A new version of FoldX, whose main new features allows running classic FoldX commands on structures containing RNA molecules and includes a module that allows parametrization of ligands or small molecules (ParamX) that were not previously recognized in old versions, has been released. An extended FoldX graphical user interface has also being developed (available as a python plugin for the YASARA molecular viewer) allowing user-friendly parametrization of new custom user molecules encoded using JSON format.
Availability And Implementation: http://foldxsuite.
Diphtheria is an acute and highly infectious disease, previously regarded as endemic in nature but vaccine-preventable, is caused by (Cd). In this work, we used an approach along the 13 complete genome sequences of followed by a computational assessment of structural information of the binding sites to characterize the "pocketome druggability." To this end, we first computed the "modelome" (3D structures of a complete genome) of a randomly selected reference strain Cd NCTC13129; that had 13,763 open reading frames (ORFs) and resulted in 1,253 (∼9%) structure models.
View Article and Find Full Text PDFThe protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins' biological behavior. It compares the energy distributions of the native state with respect to structural decoys.
View Article and Find Full Text PDFBackground: The bacterium Corynebacterium pseudotuberculosis (Cp) causes caseous lymphadenitis (CLA), mastitis, ulcerative lymphangitis, and oedema in a number of hosts, comprising ruminants, thereby intimidating economic and dairy industries worldwide. So far there is no effective drug or vaccine available against Cp. Previously, a pan-genomic analysis was performed for both biovar equi and biovar ovis and a Pathogenicity Islands (PAIS) analysis within the strains highlighted a large set of proteins that could be relevant therapeutic targets for controlling the onset of CLA.
View Article and Find Full Text PDFThe frustratometer is an energy landscape theory-inspired algorithm that aims at quantifying the location of frustration manifested in protein molecules. Frustration is a useful concept for gaining insight to the proteins biological behavior by analyzing how the energy is distributed in protein structures and how mutations or conformational changes shift the energetics. Sites of high local frustration often indicate biologically important regions involved in binding or allostery.
View Article and Find Full Text PDF